

BRIDGE EVALUATION & FEASIBILITY STUDY 3rd STREET SE OVER CEDAR RIVER FHWA #12250 WAVERLY, IOWA

July 22, 2015

SUBMITTED BY:

July 22, 2015

Phil Jones City Administrator Waverly, Iowa (319) 352-9211

Subject: Final Report 3rd St SE Bridge Evaluation & Feasibility Study City of Waverly, Iowa

Dear Phil Jones,

VJ Engineering (VJE) is pleased to submit this Final Report of the Bridge Evaluation and Feasibility Study performed on the 3rd St. SE Bridge over the Cedar River.

We appreciate you selecting VJ Engineering for this project and look forward to the opportunity to work with you again in the near future. If you have any questions about this report or require additional services, please call me at 319-338-4939.

Sincerely,

Tim McDermott, PE Structural Engineer/ Project Manager

Table of Contents

1.	PROJECT BACKGROUND	Page 3 - 5
	Bridge Description	
	Purpose	
2.	RECORDS REVIEW	Page 5 - 7
	Inspection Reports	
	Bridge Plans & Repair History	
	FEMA Flood Insurance Study	
3.	ANALYSIS	Page 7 - 13
	Procedure	
	Results	
4.	REHABILITATION ALTERNATIVES	Page 14 – 17
	Rehabilitation Items	
	Options	
	Feasibility	
5.	CONCLUSION & RECOMMENDATIONS	Page 18
6.	BRIDGE PHOTOS	Appendix A
7.	LOAD RATING CALCULATIONS	Appendix B
8.	REHABILITATION COST OPINIONS	Appendix C
9.	FEMA FLOOD INSURANCE STUDY	Appendix D
10	REHABILITATION/ REPLACEMENT DRAWINGS	Appendix E

PROJECT BACKGROUND

Bridge Description

4"ø PIN

EXP. END

The 3rd Street SE Bridge (originally known as the Harmon Street Bridge) is located in Waverly, Iowa and until 2015 carried vehicular traffic across the Cedar River. The bridge is 360' x 18' (with a 5' cantilevered sidewalk on the west side) and is comprised of (3) 120' steel through truss spans. Figures 1 & 2 show the elevation views of the 2 different truss types (East and West, respectively) used in each span and Figure 3

Figure 2 West Truss Elevation

4"ø PIN

FIXED END

		C9×	13	C9>	:13	CS	€x13	C9x13		CS	9x13	C9x13	C9x1	3
		W9>	:21	W9:	<21	W	9x21	W9x21		W	9x21	W9x21	W9x2	21
Ъ	μ	<u>.</u>	(21	W9:	<21	W	9x21	W9x21		W	9x21	W9x21	W9x2	21
5	, }	- W9>	(21	W9:	<21	W	9x21	W9x21		W	9x21	W9x21	W9x2	21
لدن	A 10	- W9>	(21	W9:	<21	W	9x21	W9x21		W	9x21	W9x21	W9x2	21
	ů,	ý W9>	(21	W9:	<21	W	9x21	W9x21		W	9x21	W9x21	W9x2	21
4	μ ά	2 W9>	(21	W9:	<21	W	9x21	W9x21		W	9x21	W9x21	W9x2	21
<u>_</u>	≷	= W9>	(21	W9:	<21	W	9x21	W9x21		W	9x21	W9x21	W9x2	21
~	ω	C12:	×20	C12	x20	C1	2x20	C12x20)	C1	2x20	C12x20	C12x2	20
÷ o		C5:	×6	C5	x6	C	5x6	C5x6		С	5x6	C5x6	C5x6	5
Ģ,		₩8×	18	₩8;	:18	₩8	3x18	₩8x18	,	W8	3x18	W8x18	W8x1	8
		C8>	.11	C8;	(11	C8	Bx11	C8x11		C8	3x11	 C8x11	 C8x1	1

7 PANELS AT $17' - 1\frac{3}{4}" = 120' - 0"$

Figure 3 Floor System Plan

shows the floor system plan. The deck is open steel grating. The substructure consists of two concrete piers which are founded on spread footings, and concrete abutments at each end founded on spread footings. The bridge was constructed in 1917 and carried vehicular traffic until it was closed in February, 2015 due to advanced deterioration of the superstructure and substructure. The bridge is not currently listed on the National Registry of Historic Places, but is eligible to be listed.

<u>Purpose</u>

The superstructure has significant corrosion and section loss at connection plates and the southwest and northwest bearing connections have failed resulting in settlement of the truss. The bearings were observed to be longitudinally expanded at a low temperature which is the opposite direction they should be which may indicate the bearings have frozen up which prohibits longitudinal movement. Significant section loss was observed on many of the bearing pins. There is heavy pitting and significant section loss on floor beams and stringers and a few crack initiations were observed by the previous inspector. The piers have significant deterioration and spalled areas, particularly near the waterline and pier caps. The abutments are delaminated and have large vertical cracks with efflorescence. The general purpose of this report will be to perform an in depth evaluation and investigate the feasibility of rehabilitating or replacing the structure for either continued vehicular use or to be repurposed as a pedestrian bridge.

In order to determine the extent of the rehabilitation necessary, a structural analysis taking current condition into consideration is required. The structural analysis needs to consider both AASHTO pedestrian design live load and vehicular live loads per AASHTO *Load and Resistance Factor Rating of Highway Bridges (*LRFR). Specific areas which require repair or strengthening shall be noted on a plan and profile drawing.

Measureable section loss, cracking, or other deficiencies which affect load carrying capacities shall be quantified for the purpose of performing the load rating analysis.

To aid in selection of the most appropriate rehabilitation or replacement alternative, the following six alternatives will be investigated:

- 1. Do nothing.
- 2. Rehabilitate the bridge and repurpose as a pedestrian bridge.
- 3. Rehabilitate the bridge for vehicular and pedestrian use.
- 4. Replace the bridge with a new pedestrian bridge.
- 5. Replace the bridge "in-kind" for vehicular and pedestrian use.
- 6. Replace the bridge with a conventional modern bridge for vehicular and pedestrian use.

A cost estimate for the construction of the rehabilitation or replacement and anticipated construction schedule will be prepared for the six alternatives. A lifecycle cost assessment will also be performed for a 20 year design life, taking future maintenance costs into consideration for each alternative.

RECORDS REVIEW

Inspection Reports

Previous Inspection Reports were reviewed and are summarized below. The number in parenthesis is the condition rating given by the previous inspector to each component on the 0-9 NBIS (National Bridge Inspection Standards) rating scale. A rating of 9 is excellent condition and 0 is failed condition.

- **Deck (7):** The deck is in satisfactory condition with some areas showing minor deterioration. The south pier joint cover plate on the top of the deck is loose and is vibrating the deck when traffic crosses.
- Superstructure (3):Significant pack rust typical at many connections. Pack rust
is causing distortion of plates built up near bearings and
bulging of pins. Significant section loss (including through
holes) of plates adjacent to the pins, and the connection has

failed at the southeast and northwest bearings of the south truss resulting in some settlement of the truss. The southwest bearing is near failure. Two additional plates were welded to the gusset plates directly above the bearing pin, at the east side of the south abutment during the 2006 repair in order to temporarily alleviate the potential for failure. Member U1:L2 on the east side of the south truss has slight sweep (out of plane bending) that is likely due to differential settlement of the truss at the failed bearings. There is section loss on some anchor bolts and nuts are not tight at several locations. The bearings are also tipped outward which is the opposite direction based on the current temperature. At the bottom of the diagonals, pack rust is causing distortion of up to approx. 3/8" of the connection angles and up to approx. 1/8" section loss. Pack rust is causing up to approx. 1/4" distortion of the tie plates on the diagonal members. The repair performed at several verticals along the west side is deteriorating. There is pack rust between the original and repair materials indicating failure of the welds. There is pack rust between the angles in the west bottom chord between panel points two and five causing distortion and section loss. The overhead bracing members have minor pack rust as well. There is a loose bolt at the bottom chord connection to vertical six in the center truss. west side. Several other bottom chord connections have heavy pitting including on the fasteners. There is impact damage to diagonal L4-U5 on the west side of the center truss, diagonal L3-U4 on the east side of the center truss, and minor impact damage to tie plates at other locations. There are several discrete locations of leaf rust and other deformation to tie plates. There is heavy pitting and significant section loss on floor beams and stringers. The flanges of the floor beams have the heaviest loss at the connections to the truss, but much of the section loss is not active and has been painted over. The webs have heavy pack rust and section loss at the connection angles to the stringers. The stringers have significant section loss in the flanges with some through holes. The webs have significant section loss especially at the connections to the floor beams.

There are two stringers in the south truss that have serious section loss at the web connection to the floor beam, one that is cracked and the other with a crack initiating. Many of the locations that were repaired have pack rust between the original repair materials indicating failure of the webs and new section loss. Significant deterioration of the stringer to floor beam connection angles, especially those with fasteners replaced by welds.

Substructure (4): Both abutments have vertical cracks with leaching. The north abutment has a large area that has been previously repaired, but is cracked and leaching again. There is significant delamination and spalling with some reinforcing exposed and corroded. The north back wall is cracked at the roadway adjacent to the bridge and appears to be crumbling. Areas of both piers near the waterline have large spalls, including a large spall in the north pier on the west end below the ice guard. The south pier has significant map cracking with leaching and the east end is spalling. The bridge seats are deteriorating especially on the south pier at the west bearing.

Bridge Plans & Repair History

The bridge plans and repair records were reviewed and determined to provide adequate dimensioning and member details to develop the structural models to be used for the load rating analysis. A site visit was still required to field measure deformations, section loss, and cracking. These deficiencies directly compromise the load carrying capacity of the bridge and were required to be quantified for use in the load rating analysis.

FEMA Flood Insurance Study (FIS)

A FEMA Flood Insurance Study (FIS) for Bremer County performed in 2008 was obtained and reviewed to determine if the bridge currently meets the Iowa DNR's criteria for minimum freeboard (vertical clearance to the Iow point of the bridge superstructure) of 3 feet above the design flood having a 2% chance of being exceeded in any given year (Q₅₀). Relevant data from the FIS is included in Appendix D. Figure 4 shows the design flood elevations for various design flows. The design elevation, which is based on the Q₅₀, is 907.1 feet.

Final Report – 3rd St SE Bridge Evaluation & Feasibility Study

Figure 4 Flood Profiles at Bridge

The low structure elevation is 906.7 which does not provide any freeboard above the design elevation. To meet the DNR's freeboard criteria, the bridge would need to be raised 3'-5".

ANALYSIS

Procedure

The structural analysis was performed according to *AASHTO LRFR*. Using the geometry, member size data, and measured deficiencies, the trusses, stringers, and floor beams were modeled in the structural analysis software STAAD. The Ratings were calculated and the controlling ratings were taken as the minimums. The bearing pins and sidewalk brackets were also analyzed due to their deteriorated conditions.

For pedestrian use, the Inventory Rating represents the maximum pedestrian live load that the bridge can safely support for an indefinite period of time. The Operating Rating represents the absolute maximum pedestrian live load that the bridge can support for a short period of time. To meet pedestrian design live load criteria the Inventory Rating should be at least 90 psf. For vehicular use, the Inventory Rating Factor represents the

proportion of design vehicular live load that the bridge can safely support for an indefinite period of time. A Rating Factor greater than or equal to 1 means the bridge is sufficient for design vehicular live loads. If the Rating Factor is less than 1, the legal live loads need to be evaluated according to IDOT criteria to determine the appropriate weight restrictions. Analysis calculations are included in Appendix B.

Pedestrian Only Use

For the truss analysis, dead loads were taken from the plans. The design pedestrian live load per *AASHTO LRFD Bridge Design Specifications* is 90 psf distributed over the entire deck area. Load factors were applied according to *AASHTO LRFD* for the Strength I load combination which produces the maximum member stresses. The factored loads were then distributed evenly and applied to the bottom chord panel points. The analysis was then run in the truss model to determine the maximum axial forces in the truss members. The axial capacities were calculated for the truss members per *AASHTO LRFD* and compared to the maximum member forces from the truss model. From that comparison, the controlling member(s) was chosen as the one with the highest ratio of maximum force to axial capacity. Additional factors were then applied to the controlling member capacity per *AASHTO LRFR* to account for the condition and importance of that particular member. The Inventory and Operating Ratings were then calculated and reported in pounds per square foot.

The dead load acting on the stringers includes the deck, railing (external stringers), and the stringer self weight. The pedestrian live load is distributed across the stringer tributary area. The loads were factored for the Strength I load combination and the load applied uniformly along the stringer. The maximum bending moment was then calculated and compared to the bending capacity per *AASHTO LRFD* with the additional factors from *AASHTO LRFR* to account for the condition and importance of the member. The Inventory and Operating Ratings were then calculated and reported in pounds per square foot.

The dead load acting on the floor beams includes the deck, stringer weight, and self weight. The pedestrian live load is transferred from the stringers to the floor beams. The loads were factored for the Strength I load combination and applied as point loads at the stringer to floor beam connections. The maximum bending moment was then calculated and compared to the bending capacity per *AASHTO LRFD* with the additional factors from *AASHTO LRFR* to account for the condition and importance of the member. The Inventory and Operating Ratings were then calculated and reported in pounds per square foot.

Final Report – 3rd	St SE Bridge	Evaluation	& Feasibility	Study
--------------------	--------------	------------	---------------	-------

Vehicular Use

For the truss analysis, dead loads were taken from the plans. The design live load per *AASHTO LRFD Bridge Design Specifications* is HL-93 which includes an evenly distributed lane load of 640 pounds per foot, an 8,000 pound axle, and two 32,000 pound axles spaced as shown in Figure 5. Load factors were applied according to *AASHTO LRFD* for the Strength I load combination which produces

Figure 5 AASHTO HL-93 Axle Loads

the maximum member stresses. The factored loads were then applied to the bottom chord panel points. The analysis was then run in the truss model to determine the maximum axial forces in the truss members. The axial capacities

were calculated for the truss members per *AASHTO LRFD* and compared to the maximum member forces from the truss model. From that comparison, the controlling member(s) was chosen as the one with the highest ratio of maximum force to axial capacity. Additional factors are then applied to the controlling member capacity per *AASHTO LRFR* to account for the condition and importance of that particular member. The Inventory and Operating Rating Factors were then calculated and reported as unit-less proportions of the HL-93 live load. If the controlling Inventory Rating Factor is less than 1, the analysis should examine the load carrying capacity for Legal Loads which are shown in Figure 6. The load application is performed similarly to the Design Load and the results are reported in tons.

The dead load acting on the stringers includes the deck, railing (external

stringers), and the stringer self weight. The HL-93 design live load is positioned such that it produces the maximum bending stress in the stringer being analyzed. The loads were factored for the Strength I load combination and the load applied uniformly along the stringer. The maximum bending moment was then calculated and compared to the bending capacity per AASHTO LRFD with the additional factors from AASHTO LRFR to account for the condition and importance of the member. The Inventory and Operating Rating Factors were then calculated and reported as unit-less proportions of the HL-93 live load. If the controlling Inventory Rating

Figure 6 AASHTO Legal Loads

Factor is less than 1 the load carrying capacity for Legal Loads is then analyzed and reported in tons.

The dead load acting on the floor beams includes the deck, stringer weight, and self weight. The HL-93 design live load is positioned such that it produces the maximum bending stress in the floor beam. The loads were factored for the Strength I load combination and applied as point loads at the stringer to floor beam connections. The maximum bending moment was then calculated and compared to the bending capacity per *AASHTO LRFD* with the additional factors from *AASHTO LRFR* to account for the condition and importance of the member. The Inventory and Operating Rating Factors were then calculated and reported as unit-less proportions of the HL-93 live load. If the controlling Inventory Rating Factor is less than 1 the load carrying capacity for Legal Loads is then analyzed and reported in tons.

<u>Results</u>

Analysis calculations are shown in Appendix B. The following results summary were obtained from the analysis:

Pedestrian Only Use

East Truss -	The Inventory and Operating Ratings were calculated as 112 psf and 146 psf respectively. The analysis was controlled by truss member L2-L3 in tension.
West Truss -	The Inventory and Operating Ratings were calculated as 42 psf and 54 psf respectively. The analysis was controlled by truss member L3-L4 in tension.
Stringers - (interior)	The Inventory and Operating Ratings were calculated as 273 psf and 353 psf respectively.
Floor Beams -	The Inventory and Operating Ratings were calculated as 130 psf and 168 psf respectively.
Sidewalk Beam -	The Inventory and Operating Ratings were calculated as 87 psf and 112 psf respectively.
Truss Bearing - (southwest)	The Inventory and Operating Ratings were calculated as 111 psf and 145 psf respectively.

Taking the minimum Inventory Rating, the bridge rating is **42 psf** controlled by the west truss. This is 53% below the AASHTO pedestrian design live load of 90 psf. If the bridge is restricted to just the roadway (ie. blocking off the cantilevered sidewalk), the bridge rating is increased to 69 psf which is 23% below the design live load. To increase the bridge rating to the required 90 psf, in addition to repairs needed to the damaged and significantly deteriorated bridge elements, the west truss members circled in Figure 7 require strengthening on each of the three spans. The total number of members that require strengthening is 12.

Figure 7 West Truss Members Requiring Strengthening for Pedestrian Live Load

Vehicular Use – Design Live Load

- East Truss -The Inventory and Operating Rating Factor Factors were
calculated as 0.43 and 0.55 respectively. The analysis was
controlled by truss member U2-L3 in tension.
- West Truss The Inventory and Operating Rating Factors were calculated as 0.29 and 0.37 respectively. The analysis was controlled by truss member L3-L4 in tension.
- Stringers -
(interior)The Inventory and Operating Rating Factors were calculated
as 0.7 and 0.91 respectively.
- Floor Beams The Inventory and Operating Rating Factors were calculated as **0.42** and **0.55** respectively.

Taking the minimum Inventory Rating Factor, the bridge rating factor is **0.29** controlled by the west truss. Because this is 71% below the AASHTO LRFD design live load, Legal Loads were required to be analyzed to determine the appropriate weight restrictions. The following summarizes the results of the Legal Load Analysis:

Vehicular Use – Legal Live Loads

Type 4 Truck -	The Type 4 Rating was calculated as 13 tons. The analysis was controlled by west truss member U2-U3 in compression.	ſ
Type 3S3 Truck -	The Type 3S3 Rating was calculated as 16 tons. The analysis was controlled by west truss member L3-L4 in tension.	
Type 3-3 Truck -	The Type 3-3 Rating was calculated as 17 tons. The analysis was controlled by west truss member L3-L4 in tension.	

To increase the bridge capacity to meet current legal and design live load criteria, in addition to repairs needed to the damaged and significantly deteriorated bridge elements, the following members require strengthening:

- 1. All interior stringers 147 total
- 2. All floor beams 18 total
- 3. East Truss members shown in Figure 8 36 total
- 4. West Truss members shown in Figure 9 36 total

Figure 8 East Truss Members Requiring Strengthening for Vehicular Live Load

Final Report – 3rd St SE Bridge Evaluation & Feasibility Study

Figure 9 West Truss Members Requiring Strengthening for Vehicular Live Load

REHABILITATION ALTERNATIVES

Rehabilitation Items

The following rehabilitation items are required to bring the bridge up to code and mitigate the current unsafe conditions for the two rehabilitation alternatives (Options 2 & 3 in next section).

- 1. Substructure Rehabilitation
 - a. Pier Repairs
 - i. Replace pier caps to raise bridge profile by 3'-5".
 - ii. Repair spalled and delaminated areas on both piers.
 - iii. Add revetment at both piers.
 - b. Abutment Repairs
 - i. Repair spalled and delaminated areas on both abutments.
 - ii. Raise abutment seats to raise bridge profile.
- 2. Superstructure Rehabilitation
 - a. Truss Repairs/ Strengthening
 - i. Reinforce overstressed truss members.
 - ii. Repair/ reinforce Gusset plate connections that are distorted or have measureable section loss.

- iii. Heat straighten member U1-L2 on the south span, east truss, member L4-U5 on the center span, west truss, member L3-U4 on the center span, east truss, and any other diagonal members distorted ½" or more.
- iv. Replace southeast, southwest, and northwest bearings on south span.
- b. Floor System Repairs
 - i. Reinforce floor beam flanges in areas of measureable section loss.
 - ii. Install new stringers adjacent to stringers with significant section loss, and the two south span stringers with cracks observed.
 - iii. Replace the stringer to floor beam connections where previous repairs replaced fasteners with welds.
 - iv. Reinforce sidewalk bracket flanges in areas of measureable section loss OR remove sidewalk.
 - v. Replace sidewalk bracket to floor beam connections in areas of measureable section loss OR remove sidewalk.
- 3. Bridge Approaches
 - a. Regrade and pave approaches to raise bridge profile.

Options

To aid in selection of the most appropriate rehabilitation or replacement alternative, the following six options were considered:

Option 1: Do nothing. This option entails leaving the bridge as-is and keeping it closed to vehicular and pedestrian traffic indefinitely.

Option 2: Rehabilitate the bridge and repurpose as a pedestrian bridge. This option entails all of the rehabilitation items in the previous section. Additionally, the entire bridge deck and railings need replacement to accommodate pedestrian use.

Option 3: Rehabilitate the bridge for vehicular and pedestrian use. This option entails all of the rehabilitation items in the previous section. The amount of required rehabilitation items is significantly great for Option 3 than Option 2.

Option 4: Replace the bridge with a new pedestrian bridge. This option entails removing the existing bridge and substructure, and constructing a new 3 span, 360'x14' pre-engineered steel pony truss bridge for pedestrian use. The deck will be timber plank and the substructure will be reinforced concrete founded on steel piles. Similarly to the rehabilitation options (Option 2 & 3), the profile grade will be raised by 3'-5" to meet freeboard requirements.

Option 5: Replace the bridge "in-kind" for vehicular and pedestrian use. This option entails removing the existing bridge and substructure, and constructing a new geometrically similar bridge for vehicular and pedestrian use. The bridge will be a 3 span, 360'x40' steel truss bridge with similar panel spacing and height as the existing bridge. The bridge will be significantly wider than the existing bridge and have more substantial truss members and floor system beams. The roadway deck will be steel grating and the sidewalk will be concrete. The substructure will be reinforced concrete on steel piles and the profile grade will be raised similarly to the previous options.

Option 6: Replace the bridge with a conventional modern bridge for vehicular and pedestrian use. This option entails removing the existing bridge and substructure, and constructing a new 3 span, 360'x40' prestressed concrete beam bridge with sidewalk, for vehicular and pedestrian use. The substructure will be reinforced concrete on steel piles. The profile will be raised an additional 2' more than the previous options (5'-8" total) due to the depth of the beams.

Drawings for Options 2-6 are shown in Appendix E and itemized Cost Opinions for Options 2-6 are shown in Appendix C.

Feasibility

The cost opinions shown in Appendix C were estimated using data from recent bid letting items from similar projects, current Iowa DOT bid item averages, and contractor input. Due to the age of the existing bridge, there is limited service life remaining even after rehabilitating the bridge from its' current condition. That said, the cost opinion of Options 2 & 3 in comparison with the replacement options do not give a comprehensive cost analysis without considering the life-cycle cost. The current bridge design life, per *AASHTO LRFD*, is 75 years which shall be applicable to Options 4-6. It is anticipated that the remaining service life for Options 2 & 3 is 20 years, at which point it would be impractical to perform any further major rehabilitations as it was already rehabilitated in the 1970s.

The following table shows a more meaningful cost comparison of options by evaluating the life-cycle costs of a 20 year period. Also shown in the table are the historical implications and impact on the existing bridge for each of the options.

Final Report – 3	rd St SF Bridae	• Evaluation &	Feasibility Study
Than hepoire 3	JUSE Dridge	. LVuluution &	reasibility Study

OPTION	DESCRIPTION	HISTORICAL IMPLICATION	IMPACT ON EXISTING STRUCTURE	DESIGN LIFE OR REMAINING SERVICE LIFE	COST OF WORK ¹	FUTURE VALUE ²	LIFE- CYCLE COSTS ³
1	Do nothing.	Existing structure will be neglected.	None.	NA	\$0	\$0	\$0
2	Rehabilitate the existing bridge for pedestrian only use.	All historically significant elements of the bridge will be preserved.	This option will have minimal impact on the existing structure. Strengthening is minimal due to removal of sidewalk.	20 years	\$1,045,000	\$0	\$1,045,000
3	Rehabilitate the existing bridge for vehicular and pedestrian only use.	All historically significant elements of the bridge will be preserved.	Due to the large amount of strengthening required, the appearance of the existing structure will be altered significantly.	20 years	\$1,730,000	\$0	\$1,730,000
4	Replace existing bridge with a new 3 span, 360'x14' pre- engineered steel pony truss bridge with timber deck for pedestrian only use. Substructure will be reinforced concrete on steel piles.	All of the historical elements will be lost.	All existing bridge components will be lost.	75 years	\$1,711,000	\$1,254,733	\$1,118,169
5	Replace existing bridge with a new 3 span, 360'x40' steel truss bridge that replicates some of the geometry of the existing bridge, for vehicular and pedestrian use. The roadway deck will be steel grating and the sidewalk will be concrete. Substructure will be reinforced concrete on steel piles.	This option tries to replicate the existing structure. For replacement options, it is the most true to the original structure.	All existing bridge components will be lost.	75 years	\$2,961,000	\$2,171,400	\$1,936,099
6	Replace existing bridge with a new 3 span, 360'x40' prestressed, precast concrete beam bridge for vehicular and pedestrian use. Substructure will be reinforced concrete on steel piles.	All of the historical elements will be lost.	All existing bridge components will be lost.	75 years	\$2,446,000	\$1,793,733	\$1,599,358

1. Includes engineering and construction management.

 Value of remaining service life after 20 years.
 CURENT VALUE = FUTURE VALUE x 1/(1+r)ⁿ Current State & Local bonds interest rate of 3.82% used for r, 20 years used for n. LIFE CYCLE COSTS = COST OF WORK – CURRENT VALUE

CONCLUSION & RECOMENDATIONS

The 3rd Street Bridge should be considered a bridge of high historical significance being one of Iowa's few remaining major bridges of an archaic design that was dominant in the era of its' construction. The bridge is too iconic of a structure to neglect so Option 1 is not recommended. According to *Guidelines for Historic Bridge Rehabilitation and Replacement,* which is an AASHTO requested study as part of the National Cooperative Highway Research Program; none of the proposed rehabilitation items for Option 2 would negatively impact the historical significance of the bridge therefore it can retain its' eligibility to be listed on the National Register of Historic Places. Also, the comparatively low cost of construction make Option 2 a feasible alternative. Due to the significant amount of reinforcing required for Option 3, the historically significant components of the bridge would be altered such that it could potentially become ineligible to be listed on the National Register of Historic Places. For this reason and the high cost for a limited service life, Option 3 should not be considered feasible.

Options 4, 5, and 6 are all acceptable alternatives from an engineering standpoint as they are entirely new construction, but with the exception of Option 5 being an homage to the original structure, all of the historic elements of the original bridge would be lost. The high construction costs of Options 5 & 6 make them cost prohibitive alternatives. Although Option 4 has a comparatively high construction cost, when the life-cycle costs are considered it becomes a feasible alternative and is life-cycle cost competitive with Option 2.

Between the two feasible alternatives, Option 2 & 4, the decision of whether to rehabilitate or replace depends on the priorities of the City. Both options adhere to current design criteria for a pedestrian bridge. Option 2 has a lower construction cost but within its' anticipated 20 year remaining service life the life-cycle costs become very close. Option 2 would provide a wider deck, 19 ft. versus 14 ft., of the two options. If the City prefers constructing a bridge with a substantial design life over preservation of the historical aspects or sentimental value of the bridge, clearly Option 4 is the prevailing alternative. If historical preservation weighs heavier than the longer design life then Option 2 should be chosen.

Final Report – 3rd St SE Bridge Evaluation & Feasibility Study

East Elevation from South Embankment

Roadway Looking North

East Elevation – South Span

East Elevation – Center Span

East Elevation – North Span

South Span Floor System Looking North

Final Report – 3rd St SE Bridge Evaluation & Feasibility Study

Southwest Bearing at South Abut. – Major section loss

South Abut. Seat – Major cracking w/ efflorescence

South Abut. Back Wall – Major cracking w/ efflorescence

South Abut. – Large cracks, spalling w/ exposed rebar

Sidewalk Bracket @ S. Pier – Section loss through bott. flange S. Pier Cap – Major delamination, crushing. Loss of bearing

Final Report – 3rd St SE Bridge Evaluation & Feasibility Study

S. Pier, S. Wall – Delamination, spalling, cracking w/leaching S. Pier, West End – Major cracking w/ efflorescence

S. Pier, East End – Major spalling near waterline

S. Pier, N. Wall – Major cracking w/ efflorescence

North Pier, South Wall – Cracking w/ efflorescence

North Abutment – Major cracking w/ efflorescence

Final Report – 3rd St SE Bridge Evaluation & Feasibility Study

Sidewalk Bracket @ N. Pier - Section loss through bott. Flange West Truss, U2L3 - Distortion, out of plane bending

West Truss, U2L3 – Distortion, out of plane bending

S.W. Bracket @ N. Span, 4th Panel – Section loss through bott. Flange

Typical corrosion on deck grating

3rd St. Bridge-FHWA #12250 City of Waverly	Load F 	Rating)								1 05-14-15
	PEDE	STRI	AN (ONLY	USE						
Span length	L _{span}	1 ≔ 1	20 ft								
Panel length	L L _{panel}	$\mathbf{L}_{\text{panel}_1} \coloneqq 17.15 \text{ft}$									
Deck width	 W _{deck}	$\mathbf{W}_{deck} := 18 \mathbf{ft}$									
per IDOT HR-239	$\mathbf{F}_{\mathbf{y}} := 3$	30 ksi									
	 <u>Dead </u>	Load									
Distributed DL taken from original plan sht. 4	 w _{DL_1} := 	= 575	lb ft				w _D	L_2 ≔ 127	$75\frac{\mathbf{lb}}{\mathbf{ft}}$		
DL Panel Point Load	 DL ₁ :=	= L _{par}	nel_1 ·	w _{DL_1}	= 9.86	k	DL	$L_2 := L_{panor}$	el_1 · WDL_2	2 = 21.87	·k
	Pedes	trian	Live	Load							
AASHTO pedestrian LL	 W _{ped_} L	⊥:= 9	90 ps f	ſ							
per LRFD 3.6.1.6	LLmod	1 := -	W _{dec}	<u>*</u> .L.,	nol 1 · Wn	od II	= 13.8	39 · k			
LL Panel Point Load (east)	pea _.	_1 ·	$\frac{2}{2}$	pa	inei_i ∵p	ea_L1					
LL Panel Point Load (west)	LL _{ped}	_2 := ($\frac{\mathbf{w}_{\mathbf{d}}}{2}$	$\frac{eck}{2}$ +	$5\mathbf{ft} \cdot \mathbf{L}_{\mathbf{p}}$	anel_1	·w _{ped_I}	LL = 21.61	l ∙ k		
	l East T	russ									
	I Truss fo	orces	anal	lyzed	in STAA	۸D pe	er AAS	HTO LRF	D Streng	th I	
24.20	(factore	d load	ds sl	nown)	200.1.		24.200			104.00	
-24.308	бкір -2 [,]	4.308	кір	-24	.308 kip		24.308	кір -24	4.308 kip	-24.3	ля кір
12.32	ikip 1	2.325	kip	.12	.325 kip	/	12.325	kip 1	2.325 kip/	12.3	25 kip
					X		/				X
				\checkmark		$\overline{\ }$					$^{\prime}$
<u> </u>											1
	I Analysis	s Res	ults	per A	ASHTO	LRF	R:	Allowable	Allowable	ACTUAL	
				Aa	L	r		Comp. ø _c P _n	Tension _{øv} F _v A _α	LOAD ?iPu	
2C8x16.25 (w/ 5/1)	Sy14 PL)	0-111	TC	(in^2)	(in)	(in)	KL/r	k 336.48	k	k	S.R.
2C8x11.5 (w/ 5/16)	k14 PL) L	J1-U2	TC	14	205.75	3.16	65.11	249.24	316.92	149.5	0.42
2C8x11.5 (w/ 5/16) 2C8x11.5 (w/ 5/16)	k14 PL) U k14 PL) U	J2-U3 J3-U4	TC TC	11.1 11.1	205.75 205.75	3.16 3.16	65.11 65.11	249.24 249.24	316.92 316.92	179.4 177.8	0.72
2L5x3.5x5/16	Ĺ	.0-L1	BC	5.12	205.75	1.02	201.72	28.40	145.92	-89.7	0.61
2L5x3.5x5/16 2L5x3.5x7/16	L	_1-L2 _2-L3	BC	5.12 8.01	205.75 205.75	1.02	201.72 205.75	28.40 42.70	145.92 228.29	-89.7 -149.5	0.65
2L5x3.5x1/2	1/4" loging)	2-L3	BC	8.01	205.75	1.00	205.75	42.70	228.29	-181	0.79
2C8x11.25 (w/ 2"x 2C8x11.25 (w/ 2"x	1/4 lacing) L 1/4" lacing) L	.1-01 .2-U2	vert vert	6.61 6.61	252.00 252.00	3.16 3.16	79.75 79.75	134.98	188.39	-36.6 36.6	0.19
2C8x11.25 (w/ 2"x	1/4" lacing) L	.3-U3	vert	6.61	252.00	3.16	79.75	134.98	188.39	2	0.01
2L5x3x5/16 2L3.5x2.5x1/4	<u>เ</u>	J2-L2	diag.	4.81 2.9	325.31 325.31	0.85	382.72 445.63	7.41 3.30	137.09 82.65	-94.6 -47.3	0.69
2L2.5x2.5x1/2	ι	J3-L4	diag.	4.5	325.31	0.74	439.61	5.26	128.25	2.6	0.49

3rd St. Bridge-FHWA #12250 City of Waverly	 Load	d Rati	ng							2 05-14-15
	 Men	nber l	_2-L3 c	ontrols						
	 AAS	внто	LRFR	Pedestri	an Lo	ad Ratii	ng:			
Condition Factor	 0.4		:= 0.85	i						
System Factor		russ_1	·- 0.0							
	$ \Psi_{s_t}$	russ_1	0.9							
L2-L3 Capacity		ss_1 :=	min(($0.85, \varphi_{c_t}$	russ_1	$\varphi_{s_truss_}$	$(1) \cdot 228.3 \text{ k}$			
L2-L3 DL	 γDI	truss	1 ≔ 1.2	25·40.2 k						
L2-L3 LL	 γLI	-truce	i := 1.7	′5·56.7 k						
Inventory Rating	 INV	truss_1	:= w _p	$ed_{LL} \cdot \frac{C_{tr}}{}$	uss_1 -	- γDL _{tru}	$\frac{185_1}{1} = 112.$	83 ∙ psf		
Operating Rating	 OPI 	R _{truss_}	$\mathbf{w}_{\mathbf{I}} := \mathbf{w}_{\mathbf{I}}$	ped_LL $\cdot \frac{C_t}{\gamma}$	russ_1	$\frac{-\gamma DL_{tr}}{ss_{1} \cdot \left(\frac{1.3}{1.7}\right)}$	$\frac{russ_1}{35} = 146$	5.27 ∙ psf		
	We	est Tr	uss							
	I I Trus	s for	ces an	alvzed in	STAA	AD per A	ASHTO L	RFD Strer	nath I	
	l (fact	tored	loads :	shown)					- J	
27.040.11	10	7 040		107.040		107.04	o Ia	7.040.11	127.044	
-37.818 ki	p -3	57.818	kip	-37.818	kip	-37.81	8 kip - 3	37.818 kip	-37.818	вкір
07.075.11		7 075		07.075		07.07			07.07	
		V-375	kip	K	kip	7		1/-3/6-kip	21.31	5 kip
		\mathbf{i}							$\langle \rangle$	
					$\langle -$					
			\mathbf{X}		\mathbf{i}					\mathbf{X}
				\checkmark		\mathbf{V}				
<u>Å</u>										7
	¦ Ana	lysis	Result	s per AAS	SHTO	LRFR:				
							Allowable Comp.	Tension	LOAD	
			Ag	L	r		ø _c P _n	ø _y F _y A _g	?₁Pu	
200x20 (w/ 3/8x15 PL)		тс	(in^2)	(in)	(in)	KL/r	k	k	k	S.R.
2C9x13.25 (w/ 3/8x15 PL)	U1-U2	TC	12.6	205.75	3.56	57.79	293.09	408.20 358.25	252.5	0.03
2C9x13.25 (w/ 3/8x15 PL)	U2-U3	TC	12.6	205.75	3.56	57.79	293.09	358.25	319.3	1.09
2C9x13.25 (w/ 3/8x15 PL)	U3-U4	TC	12.6	205.75	3.56	57.79	293.09	358.25	316.5	1.08
2L5x3.5x9/16	L0-L1	BC	11.6	205.75	0.97	212.11	58.19	330.60	-159.7	0.48
2L5x3.5x9/16	L1-L2	BC	11.6	205.75	0.97	212.11	58.19	330.60	-159.7	0.48
$2L_{0}X_{0}3.5X_{0}710 + 2L_{0}X_{0}3.5X_{0}7716$	13-14	BC	10.2	205.75	1.02	201.72	62.23 56.80	319.77 201 84	-266.1	0.83
2C8x11.25 (w/ 2"x1/4" lacing)	L1-L11	vert	6.61	252.00	3 16	79 75	134.98	188.39	-65.2	0.35
2C8x11.25 (w/ 2"x1/4" lacing)	L2-U2	vert	6.61	252.00	3.16	79.75	134.98	188.39	65.2	0.48
2C8x11.25 (w/ 2"x1/4" lacing)	L3-U3	vert	6.61	252.00	3.16	79.75	134.98	188.39	3.5	0.03
2L6x3.5x7/16	U1-L2	diag.	9.04	325.31	0.97	335.37	18.14	257.64	-168.3	0.65
2L5x3x5/16	U2-L3	diag.	4.81	325.31	0.85	382.72	7.41	137.09	-84.2	0.61
2L2.5x2.5x1/4	U3-L4	diag.	2.37	162.66	0.76	214.02	11.68	67.55	4.5	0.39

3rd St. Bridge-FHWA #12250 City of Waverly	Load Rating	3 05-14-15
	Member 1314 controls	
	AASHTO LEER Pedestrian Load Rating:	
	$\mathbf{C}_{trues} = \mathbf{min}(0.85, \boldsymbol{\varphi}_{c}, trues, 1, \boldsymbol{\varphi}_{c}, trues, 1) \cdot 291.8\mathbf{k}$	
	$\frac{1}{1} \frac{1}{1} \frac{1}$	
3- 4	$\gamma DL_{truss_2} := 1.25 \cdot 108.2 \text{K}$	
Inventory Rating	$INV_{truss_2} := w_{ped_LL} \cdot \frac{C_{truss_2} - \gamma DL_{truss_2}}{\gamma LL_{truss_2}} = 42.36 \cdot psf$	
Operating Rating	$OPR_{truss_2} := w_{ped_LL} \cdot \frac{C_{truss_2} - \gamma DL_{truss_2}}{\gamma LL_{truss_2} \cdot \left(\frac{1.35}{1.75}\right)} = 54.92 \cdot psf$	
	Floor System	
	Exterior Stringers:	
Distributed DL	$\mathbf{w}_{\mathbf{DL_1_ext_strngr}} \coloneqq \frac{\mathbf{w}_{\mathbf{DL_1}}}{\mathbf{W}_{\mathbf{deck}}} \cdot \frac{(2\mathbf{ft} + 5\mathbf{in})}{2} = 38.6 \frac{\mathbf{lb}}{\mathbf{ft}}$	
Distributed LL	$\mathbf{w}_{\mathbf{LL_1_ext_strngr}} \coloneqq \mathbf{w}_{\mathbf{ped_LL}} \cdot \frac{(2\mathbf{ft} + 5\mathbf{in})}{2} = 108.75 \frac{\mathbf{lb}}{\mathbf{ft}}$	
	Stringer forces analyzed in STAAD per AASHTO LRFR Pedestrian Strength I	
	Mz(kip-in)	
		$[-150]{-100}$
	50 -	-50
		2
	50 - 5 10 15 17	-50
 	100 - 150 -	-100 -150
 	East exterior stringer channels are C9x13.	
	$\mathbf{Z}_{\mathbf{x}_C9\mathbf{x}13} \coloneqq 12.6\mathbf{in}^3$	
Nominal flexural resistance I	$\phi \mathbf{M}_{\mathbf{n}_\mathbf{ext}_\mathbf{strngr}_1} \coloneqq \mathbf{F}_{\mathbf{y}} \cdot \mathbf{Z}_{\mathbf{x}_\mathbf{C9x13}} = 31.5 \cdot \mathbf{ft} \cdot \mathbf{k}$	
L	-	

3rd St. Bridge-FHWA #12250 City of Waverly	Load Rating 4 05-14-15
	AASHTO LRFR Pedestrian Load Rating:
Condition Factor	$\varphi_{c_ext_strngr_1} := 0.85$
System Factor	$\boldsymbol{\varphi}_{s_ext_strngr_1} \coloneqq 1$
Exterior Stringer Capacity	$C_{ext_strngr_1} := \phi_{c_ext_strngr_1} \cdot \phi_{s_ext_strngr_1} \cdot \phi M_{n_ext_strngr_1}$
Exterior Stringer DL moment	$\gamma DL_{ext_strngr_1} := 1.25 \cdot 1.43 ft \cdot k$
Exterior Stringer LL moment	$\gamma LL_{ext_strngr_1} := 1.75 \cdot 4.01 \mathbf{k} \cdot \mathbf{ft}$
Inventory Rating	$INV_{ext_strngr_1} := w_{ped_LL} \cdot \frac{C_{ext_strngr_1} - \gamma DL_{ext_strngr_1}}{\gamma LL_{ext_strngr_1}} = 320.47 \cdot psf$
Operating Rating	$OPR_{ext_strngr_1} := w_{ped_LL} \cdot \frac{C_{ext_strngr_1} - \gamma DL_{ext_strngr_1}}{\gamma LL_{ext_strngr_1} \cdot \left(\frac{1.35}{1.75}\right)} = 415.42 \cdot psf$
	Interior Stringers:
Distributed DL	$\mathbf{w}_{\mathbf{DL_1_strngr}} \coloneqq \frac{\mathbf{w}_{\mathbf{DL_1}}}{\mathbf{W}_{\mathbf{deck}}} \cdot (2\mathbf{ft} + 5\mathbf{in}) = 77.2 \frac{\mathbf{lb}}{\mathbf{ft}}$
Distributed LL	$\mathbf{w}_{\mathbf{LL}_1_strngr} := \mathbf{w}_{\mathbf{ped}_\mathbf{LL}} \cdot (2\mathbf{ft} + 5\mathbf{in}) = 217.5 \frac{\mathbf{lb}}{\mathbf{ft}}$
 	Stringer forces analyzed in STAAD per AASHTO LRFR Pedestrian Strength I Mz(kip-in)
	100 - 5 10 15 17.1 100
	200 - 300211 -200 -300
 	Interior stringers are I9x21
	$\mathbf{Z_{x 19x21}} := 21.7 \text{in}^3$
Nominal flexural resistance l	$ \phi \mathbf{M}_{\mathbf{n}_strngr_1} := \mathbf{F}_{\mathbf{y}} \cdot \mathbf{Z}_{\mathbf{x}_\mathbf{I}9\mathbf{x}21} = 54.25 \cdot \mathbf{ft} \cdot \mathbf{k} $ AASHTO LRFR Load Rating:
Stringer Capacity	$C_{strngr_1} := \phi_{c_ext_strngr_1} \cdot \phi_{s_ext_strngr_1} \cdot \phi_{M_n_strngr_1}$
Stringer DL moment	$\gamma DL_{strngr 1} := 1.25 \cdot 2.83 ft \cdot k$
Stringer LL moment	$\gamma LL_{strngr_1} := 1.75 \cdot 8.02 \mathbf{k} \cdot \mathbf{ft}$
Inventory Rating	$INV_{strngr_1} := w_{ped_LL} \cdot \frac{C_{strngr_1} - \gamma DL_{strngr_1}}{\gamma LL_{strngr_1}} = 273.01 \cdot psf$
Operating Rating	$OPR_{strngr_1} \coloneqq w_{ped_LL} \cdot \frac{C_{strngr_1} - \gamma DL_{strngr_1}}{\gamma LL_{strngr_1} \cdot \left(\frac{1.35}{1.75}\right)} = 353.91 \cdot psf$

3rd St. Bridge-FHWA #12250 City of Waverly	Load Rating 5 05-14-15
	Interior Stringers (at C.L. of west truss):
Distributed DL	$\mathbf{w}_{\mathbf{DL}_2_ext_strngr} := \frac{\mathbf{w}_{\mathbf{DL}_2}}{\mathbf{W}_{\mathbf{deck}}} \cdot (2\mathbf{ft} + 5\mathbf{in}) = 171.18 \frac{\mathbf{lb}}{\mathbf{ft}}$
Distributed LL	$\mathbf{w}_{\mathbf{LL}_2_ext_strngr} := \mathbf{w}_{\mathbf{ped}_\mathbf{LL}} \cdot (2\mathbf{ft} + 5\mathbf{in}) = 217.5 \frac{\mathbf{lb}}{\mathbf{ft}}$
	Stringer forces analyzed in STAAD per AASHTO LRFR Pedestrian Strength I
	Mz(kip-in)
	$\begin{bmatrix} 300\\ 200 \end{bmatrix}$ $\begin{bmatrix} 300\\ 200 \end{bmatrix}$
l	100 100
	300 → -263 ⊢300
	Stringers are C12x20
l	$\mathbf{Z}_{\mathbf{x}_C12\mathbf{x}20} \coloneqq 25.6\mathbf{in}^3$
ا Nominal flexural resistance I ا	$\phi \mathbf{M}_{n_ext_strngr_2} := \mathbf{F}_{\mathbf{y}} \cdot \mathbf{Z}_{\mathbf{x_C12x20}} = 64 \cdot \mathbf{ft} \cdot \mathbf{k}$
l	AASHTO LRFR Load Rating:
Stringer Capacity	$C_{ext_strngr_2} := \varphi_{c_ext_strngr_1} \cdot \varphi_{s_ext_strngr_1} \cdot \varphi M_{n_ext_strngr_2}$
Stringer DL moment	$\gamma DL_{ext_strngr_2} := 1.25 \cdot 6.28 \mathbf{ft} \cdot \mathbf{k}$
Stringer LL moment	$\gamma LL_{ext_strngr_2} := 1.75 \cdot 8.02 \mathbf{k} \cdot \mathbf{ft}$
Inventory Rating	$INV_{ext_strngr_2} := w_{ped_LL} \cdot \frac{C_{ext_strngr_2} - \gamma DL_{ext_strngr_2}}{\gamma LL_{ext_strngr_2}} = 298.5 \cdot psf$
I Operating Rating I I	$OPR_{ext_strngr_2} := w_{ped_LL} \cdot \frac{C_{ext_strngr_2} - \gamma DL_{ext_strngr_2}}{\gamma LL} = 386.95 \cdot psf$
	Sidewalk Bracket (tapered I beam):
- - - -	To account for the bracket that has significant web section loss and is disjointed from the bottom angles (bottom flange), the bottom 2" of the tapered I beam are excluded from the capacity calculation.
Section properties at truss	$\mathbf{A_{sw_bracket}} := 16\mathbf{in} \cdot 0.25\mathbf{in} + 2 \cdot 2.37\mathbf{in}^2 = 8.74 \cdot \mathbf{in}^2 \mathbf{a_{sw_bracket}} := \frac{10.7232}{2}\mathbf{in} + 2.19\mathbf{in}^2$
 	$\mathbf{Z}_{sw_bracket} := \frac{\mathbf{A}_{sw_bracket}}{2} \cdot \mathbf{a}_{sw_bracket} = 33 \cdot \mathbf{in}^3$
Flexural resistance at truss I end I	$\phi \mathbf{M}_{sw_bracket} := \mathbf{F}_{y} \cdot \mathbf{Z}_{sw_bracket} = 82.5 \cdot \mathbf{ft} \cdot \mathbf{k}$ AASHTO LRFR Load Rating:
Bracket Capacity	$C_{sw_bracket} := 0.85 \cdot \phi M_{sw_bracket} = 70.126 \cdot ft \cdot k$
 	$\left(24\frac{\mathbf{k}}{2}\right)$
DL moment at truss end	$\gamma \mathbf{DL}_{\mathbf{sw_bracket}} \coloneqq 1.25 \cdot \frac{\left(2.4 \text{ ft}\right)}{2} \cdot \left(5 \text{ ft}\right)^2$

3rd St. Bridge-FHWA #12250 City of Waverly	Load Rating 6 05-14-15								
LL moment at truss end	$\gamma LL_{sw_bracket} := 1.75 \cdot \frac{\left(1.54 \frac{\mathbf{k}}{\mathbf{ft}}\right)}{2} \cdot (5\mathbf{ft})^2$								
Inventory Rating	$INV_{sw_bracket} := w_{ped_LL} \cdot \frac{\frac{\sigma_{sw_bracket}}{\gamma LL_{sw_bracket}}}{\gamma LL_{sw_bracket}} = 87.16 \cdot psf$								
Operating Rating DL from stringers	$OPR_{sw_bracket} := w_{ped_LL} \cdot \frac{C_{sw_bracket} - \gamma DL_{sw_bracket}}{\gamma LL_{sw_bracket} \cdot \left(\frac{1.35}{1.75}\right)} = 112.99 \cdot psf$ Floor Beams: $P_{DL_1_2_FB} := 1.3k$ Prv_t t t true := 3.74k								
	Floor beam forces analyzed in STAAD per AASHTO Pedestrian LRFD								
	Strength I (factored loads shown)								
	-6.545 kip								
	1.625 kip -1.625 kip -								
	Eleer beeme ere W19yEE								
	$\mathbf{Z}_{\mathbf{x} \ \mathbf{W18x55}} := 112 \mathbf{in}^3$								
Nominal flexural resistance	$\mathbf{\phi}\mathbf{M}_{n_FB_1} \coloneqq \mathbf{F}_{\mathbf{y}} \cdot \mathbf{Z}_{\mathbf{x}_W18\mathbf{x}55} = 280 \cdot \mathbf{ft} \cdot \mathbf{k}$								
System Factor	AASHTO LRFR Load Rating: $\varphi_{s_FB_1} := 0.85$								
Floor Beam Capacity	$C_{FB_1} := \varphi_{s_FB_1} \cdot \varphi M_{n_FB_1}$								
Floor Beam DL moment	$\gamma DL_{FB_1} := 1.25 \cdot 27.9 \text{ft} \cdot \text{k}$								
Floor Beam LL moment	$\gamma LL_{FB_{1}} \coloneqq 1.75 \cdot 80.3 \mathbf{k} \cdot \mathbf{ft}$								
Inventory Rating	$\mathbf{INV}_{\mathbf{FB}_1} \coloneqq \mathbf{w}_{\mathbf{ped}_\mathbf{LL}} \cdot \frac{\mathbf{C}_{\mathbf{FB}_1} - \mathbf{\gamma} \mathbf{DL}_{\mathbf{FB}_1}}{\mathbf{\gamma} \mathbf{LL}_{\mathbf{FB}_1}} = 130.09 \cdot \mathbf{psf}$								
Operating Rating	$\mathbf{OPR}_{\mathbf{FB}_{1}} \coloneqq \mathbf{w}_{\mathbf{ped}_{\mathbf{LL}}} \cdot \frac{\mathbf{C}_{\mathbf{FB}_{1}} - \gamma \mathbf{DL}_{\mathbf{FB}_{1}}}{\gamma \mathbf{LL}_{\mathbf{FB}_{1}} \cdot \left(\frac{1.35}{1.75}\right)} = 168.64 \cdot \mathbf{psf}$								
	Truss Bearings:								
	The 4" \$\phi pin at the SW bearing has 2.5" of remaining section.								
Pin & Bearing plates	$D_{SW} := 2.5 in$ $t_{SW} := 1.75 in$								
Nominal bearing resistance	$\mathbf{\Phi}\mathbf{P}_{\mathbf{n}_{\mathbf{S}\mathbf{W}}} \coloneqq \mathbf{F}_{\mathbf{y}} \cdot 2 \cdot \mathbf{D}_{\mathbf{S}\mathbf{W}} \cdot \mathbf{t}_{\mathbf{S}\mathbf{W}} = 262.5 \cdot \mathbf{k}$								
Strength I truss reactions (from STAAD analysis)	$\mathbf{V}_{\mathbf{u}_{\mathbf{SW}}} \coloneqq 189.3 \mathbf{k}$								

3rd St. Bridge-FHWA #12250 City of Waverly	Load Rating 8 05-14-15
	HL-93 VEHICULAR USE 32 kips 32 kips 8 kips Design Live Load
Stringer spacing	$S_{stringer} := 2ft + 5in$
Live load distribution factor per AASHTO 4.6.2.2.2b-1	$\mathbf{DF_{interior}} := \frac{\mathbf{S_{stringer}}}{8\mathbf{ft}} = 0.3021$
Live load impact factor	IM := 0.33
Wheel loads	
Lane load	$P_1 := 0.5 \cdot 8k = 4000 lb$ $P_2 := 0.5 \cdot 32k = 16000 lb$
	$LL_{lane} := DF_{interior} \cdot 640 \frac{lb}{ft} = 193.33 \frac{lb}{ft}$
י 	Floor System
 Point loads on stringers 	Interior $LL_{stringer} := (1 + IM) \cdot DF_{interior} \cdot P_2 = 6.43 \cdot k$ Worst case when back axle is at stringer mid-span) Stringer forces analyzed in STAAD per AASHTO LRFR Strength I Mz(kip-in) ⁸⁰⁰
	$\begin{array}{c} 400 \\ 1 \\ 1 \\ 400 \\ 800 \\ 800 \\ \end{array}$
I Stringer LL moment	AASHTO LRFR Load Rating: $\gamma LL_{strngr_2} := 1.75 \cdot 34.6 \mathbf{k} \cdot \mathbf{ft}$
Inventory Rating Factor	$INV_{strngr_2} := 1 \cdot \frac{C_{strngr_1} - \gamma DL_{strngr_1}}{\gamma LL_{strngr_2}} = 0.7$
Operating Rating Factor	$OPR_{strngr_2} \coloneqq 1 \cdot \frac{C_{strngr_1} - \gamma DL_{strngr_1}}{\gamma LL_{strngr_2} \cdot \left(\frac{1.35}{1.75}\right)} = 0.91$
 	_

d St. Bridge-FHWA #12250 ity of Waverly	Loa	id Ratir	ng							05-14-
	Ca	ase 3:								
	7	SPA	CES	@ 17'-	-1 <u>3</u> "	= 12	20'-0"			
-		3'-1	<u>3</u> " 4	14'	-0"	14'-	-0"	$3' - 1\frac{3}{4}$,	
R4	R4		F	P1	F	P2 R2	P2 R3		R4	
Truss forces analyzed in STAAD per AASHTO LRFR Strength I										
<u> </u>							Allowable	Allowable	ACTUAL	
			Δ.	-	r		comp.	rension	2.P	
			(in^2)	(in)	(in)	KL/r	k k	k k	۰۱۰ u k	S.R.
2C8x16.25 (w/ 5/16x14 PL)	L0-U1	TC	14	162.66	3.16	51.47	336.48	399.00	223.7	0.66
2C8x11.5 (w/ 5/16x14 PL)	U1-U2	2 TC	11.1	205.75	3.16	65.11	249.24	316.92	254.2	1.02
2C8x11.5 (w/ 5/16x14 PL)	U2-U3	3 TC	11.1	205.75	3.16	65.11	249.24	316.92	304.3	1.22
2C8x11.5 (w/ 5/16x14 PL)	03-04	4 TC	11.1	205.75	3.16	65.11	249.24	316.92	294.5	1.18
2L5X3.5X5/16	L0-L1	BC	5.12	205.75	1.02	201.72	28.40	145.92	-141.5	0.97
2L5X3.5X5/10	L1-L2	BC	0.1Z	205.75	1.02	201.72	20.40	140.92	-141.5	0.97
21.5x3.5x1/2	L2-L3	BC	8.01	205.75	1.00	205.75	42.70	220.29	-204.2	1.11
2C8x11 25 (w/ 2"x1/4" lacing)	LZ-LJ	vert	6.61	252.00	3 16	79 75	134.98	188.39	-35.3	0.19
2C8x11.25 (w/ 2"x1/4" lacing)	L2-U2	2 vert	6.61	252.00	3.16	79.75	134.98	188.39	98.4	0.73
2C8x11.25 (w/ 2"x1/4" lacing)	L3-U3	s vert	6.61	252.00	3.16	79.75	134.98	188.39	24.4	0.18
2L5x3x5/16	U1-L2	diag.	4.81	325.31	0.85	382.72	7.41	137.09	-183.8	1.34
2L3.5x2.5x1/4	U2-L3	diag.	2.9	325.31	0.73	445.63	3.30	82.65	-127	1.54
	Me AA	ember ASHTC	U2-L3) LRFI min((Controls	ating:	400.01	().82 65k	120.23	00.7	0.00
J2-L3 Capacity	∿tri	uss_3 ·-		, Ψc_tı	uss_1	∀ s_truss_	I) 02.03K			
J2-L3 DL I	γD	L _{truss_3}	:= 1.2	25·12.7 k						
J2-L3 LL	γL	L _{truss_3}	:= 1.7	5∙63.5 k						
Inventory Rating Factor $I = 1 \cdot \frac{C_{truss_3} - \gamma DL_{truss_3}}{\gamma LL_{truss_3}} = 0.43$										
	Operating Rating Factor $\int_{1}^{1} OPR_{truss \ 3} := 1 \cdot \frac{C_{truss \ 3} - \gamma DL_{truss \ 3}}{C_{truss \ 3}} = 0.55$									
Dperating Rating Factor	OP	R _{truss_} 3	; := 1 ·	C _{truss_3} –	γDL	$\frac{\text{truss}_3}{35} =$	0.55			

I Truss forces analyzed in STAAD per AASHTO LRFR Strength I

							Allowable	Allowable	ACTUAL	
	1						Comp.	Tension	LOAD	
			Ag	L	r		øc P n	$\phi_y F_y A_g$?i₽u	
			(in^2)	(in)	(in)	KL/r	k	k	k	S.R.
2C9x20 (w/ 3/8x15 PL)	LD-U1	TC	16.4	162.66	3.44	47.28	402.13	468.26	320.4	0.80
2C9x13.25 (w/ 3/8x15 PL)	U 1-U2	TC	12.6	205.75	3.56	57.79	293.09	358.25	370.9	1.27
2C9x13.25 (w/ 3/8x15 PL)	U 2-U3	TC	12.6	205.75	3.56	57.79	293.09	358.25	444	1.51
2C9x13.25 (w/ 3/8x15 PL)	U 3-U4	TC	12.6	205.75	3.56	57.79	293.09	358.25	433.3	1.48
2L5x3.5x9/16	Lp-L1	BC	11.6	205.75	0.97	212.11	58.19	330.60	-211.5	0.64
2L5x3.5x9/16	L1-L2	BC	11.6	205.75	0.97	212.11	58.19	330.60	-211.5	0.64
2L5x3.5x5/16 + 2L5x3.5x3/8	L2-L3	BC	11.2	205.75	1.02	201.72	62.23	319.77	-370.9	1.16
4L5x3.5x7/16	L3-L4	BC	10.2	205.75	1.02	201.72	56.80	291.84	-441.1	1.51
2C8x11.25 (w/ 2"x1/4" lacing)	L1-U1	vert	6.61	252.00	3.16	79.75	134.98	188.39	-63.8	0.34
2C8x11.25 (w/ 2"x1/4" lacing)	L2-U2	vert	6.61	252.00	3.16	79.75	134.98	188.39	127	0.94
2C8x11.25 (w/ 2"x1/4" lacing)	L3-U3	vert	6.61	252.00	3.16	79.75	134.98	188.39	22.9	0.17
2L6x3.5x7/16	U1-L2	diag.	9.04	325.31	0.97	335.37	18.14	257.64	-257.6	1.00
2L5x3x5/16	U2-L3	diag.	4.81	325.31	0.85	382.72	7.41	137.09	-163.9	1.20
2L2.5x2.5x1/4	U3-L4	diag.	2.37	162.66	0.76	214.02	11.68	67.55	-40.7	0.60

Member L3-L4 controls

AASHTO LRFR Design Load Rating:

L3-L4 LL

$$- \gamma LL_{truss_4} := 1.75 \cdot 174.8 k$$

1

Ι 1

T

L

Inventory Rating Factor I INV_{truss_4} :=
$$1 \cdot \frac{\mathbf{C}_{truss_2} - \gamma \mathbf{DL}_{truss_2}}{\gamma \mathbf{LL}_{truss_4}} = 0.29$$

Operating Rating Factor I OPR_{truss_4} := $1 \cdot \frac{\mathbf{C}_{truss_2} - \gamma \mathbf{DL}_{truss_2}}{(1.25)} = 0.37$

Operating Rating Factor

$$1 \cdot \frac{\gamma LL_{truss_4}}{\gamma LL_{truss_4}} \cdot \left(\frac{1.35}{1.75}\right)$$

	Truss	force	es anal	lyzed in	STAA	D per A	ASHTO L	RFR Strer	ngth I	1
							Allowable	Allowable	ACTUAL	
			•	-	-		Comp.	Tension		
			Ag (in^2)	L (in)	(in)	KI/r	Øcrn k	ØуГуАg ⊮	?iPu k	S D
2C9x20 (w/ 3/8x15 PL)	1.0-U1	TC	16.4	162.66	3 44	47.28	402 13	▲ 468.26	284.6	0.71
2C9x13.25 (w/ 3/8x15 PL)	U1-U2	TC	12.6	205.75	3.56	57.79	293.09	358.25	309.7	1.06
2C9x13.25 (w/ 3/8x15 PL)	U2-U3	TC	12.6	205.75	3.56	57.79	293.09	358.25	375.1	1.28
2C9x13.25 (w/ 3/8x15 PL)	U3-U4	TC	12.6	205.75	3.56	57.79	293.09	358.25	356.3	1.22
2L5x3.5x9/16	L0-L1	BC	11.6	205.75	0.97	212.11	58.19	330.60	-180	0.54
2L5x3.5x9/16	L1-L2	BC	11.6	205.75	0.97	212.11	58.19	330.60	-180	0.54
2L5x3.5x5/16 + 2L5x3.5x3/8	L2-L3	BC	11.2	205.75	1.02	201.72	62.23	319.77	-309.7	0.97
4L5x3.5x7/16	L3-L4	BC	10.2	205.75	1.02	201.72	56.80	291.84	-362.7	1.24
2C8x11.25 (w/ 2"x1/4" lacing)	L1-U1	vert	6.61	252.00	3.16	79.75	134.98	188.39	-61.6	0.33
2C8x11.25 (w/ 2"x1/4" lacing)	L2-U2	vert	6.61	252.00	3.16	79.75	134.98	188.39	99.6	0.74
2C8X11.25 (W/ 2 X1/4 Tacing)	L3-U3	vert	0.01	252.00	3.10	19.15	134.98	188.39	16.2	0.12
2L0X3.3X7/10	U1-L2	diag.	9.04	320.31	0.97	335.37	7.41	237.04	-200.0	0.80
2L3X3X3/10	U2-L3	diag.	4.01	162.66	0.00	214 02	11 60	67.55	-120.0	0.94
212.322.321/4	03-L4	ulay.	2.37	102.00	0.70	214.02	11.00	07.55	-29.1	0.44
ype 4 Truck Rating	Type_	_4 := 1	27.25 t o	$\frac{C_{\text{truss}}}{\sqrt{2}}$	_5 [_]	1 <mark>DL_{truss_}</mark> uss_5	$\frac{5}{2} = 13 \cdot \mathbf{to}$	n		
	Type 35 Truck + TotolW1 (40 Ton	53 Tr <u>Semi-</u> 5. = 80 5)	uck trailer (Kips W	Type 3534	<u>N</u>	6.5 13.0	43 4' 6.5 13.0	20'	7 14	
neel loads	P ₅ :=	= 0.5· P 5·($12\mathbf{k} = 0$	6∙ k P o Po-11ft	$\mathbf{b} := 0.$ $\mathbf{P_6} \cdot \mathbf{P_6}$	$5 \cdot 13\mathbf{k} =$	$6.5 \cdot \mathbf{k}$ $\mathbf{P}_7 \cdot (35 \mathbf{ft} + \mathbf{k})$	$\mathbf{P_7} \coloneqq 0.5$ $39\mathbf{ft} + 43\mathbf{ft}$	$5 \cdot 14\mathbf{k} = 7$	k

3rd St. Bridge-FHWA #12250 City of Waverly	Load Rating	22 05-14-15
	Legal Load Rating Summary	
	Type_4 = $13 \cdot ton$	
	$Type_3S3 = 16 \cdot ton$	
	$Type_3_3 = 17 \cdot ton$	
	WEIGHT LIMIT 13 16 17	
	-	

3rd St. Bridge-FHWA #12250 City of Waverly	Load	d Rati	ng						(23 05-14-15
	 S P	IDEV	VALK trian L	ONLY						
	ļ									
LL Panel Point Load (west)	 LI 	-ped_3	:= 5 ft	·L _{panel_1} ·v	^w ped_Ll	L = 7.72	·k			
	¦ ⊻	Vest 7	<u> Truss</u>							
	Tru (fa	uss fo ctore	orces a d loads	nalyzed i s shown)	n STA	AD per /	AASHTO L	RFD Stren	gth I	
21.375 kip 21.375 kip 21.375 kip 27.375 kip 27.375 kip 21.375										
<u>Å</u>							Allowable	Allowable	ACTUAL	
	1			_			Comp.	Tension	LOAD	
	1		A _g	L (in)	(in)	KI /r	ø _c P _n	ø _y F _y A _g	?iPu	ер
2C9x20 (w/ 3/8x15 PL)	IL0-U1	тс	16.4	162.66	3.44	47.28	402.13	468.26	158.3	0.39
2C9x13.25 (w/ 3/8x15 PL)	U1-U2	TC	12.6	205.75	3.56	57.79	293.09	358.25	166.9	0.57
2C9x13.25 (w/ 3/8x15 PL)	JU2-U3	TC	12.6	205.75	3.56	57.79	293.09	358.25	200.3	0.68
2C9x13.25 (w/ 3/8x15 PL)	U3-U4	TC	12.6	205.75	3.56	57.79	293.09	358.25	198.5	0.68
2L5X3.5X9/16	LU-L1	BC	11.0	205.75	0.97	212.11	58.19	330.60	-100.1	0.30
215x3.5x5/16 + 215x3.5x3/8	12-13	BC	11.0	205.75	1.02	201.72	62.23	319.77	-100.1	0.50
4L5x3.5x7/16	L3-L4	BC	10.2	205.75	1.02	201.72	56.80	291.84	-202	0.69
2C8x11.25 (w/ 2"x1/4" lacing)	L1-U1	vert	6.61	252.00	3.16	79.75	134.98	188.39	-40.9	0.22
2C8x11.25 (w/ 2"x1/4" lacing)	L2-U2	vert	6.61	252.00	3.16	79.75	134.98	188.39	40.9	0.30
2C8x11.25 (w/ 2"x1/4" lacing)	L3-U3	vert	6.61	252.00	3.16	79.75	134.98	188.39	2.2	0.02
2L6x3.5x7/16	U1-L2	diag.	9.04	325.31	0.97	335.37	18.14	257.64	-105.6	0.41
2L5X3X5/16		diag.	4.81	325.31	0.85	382.72	11.69	137.09	-52.8	0.39
Member L3-L4 controlsAASHTO LRFR Pedestrian Load Rating:L3-L4 CapacityL3-L4 DLL3-L4 DL $\gamma DL_{truss_8} := 1.25 \cdot 108.2 k$ L3-L4 LLInventory Rating										
Operating Rating	 	PR _{trus}	_{ss_8} := ·	C W _{ped_LL} · — ,	γL truss_8 γLL _{tru}	$\frac{\mathbf{L}_{\text{truss}_8}}{-\gamma \mathbf{DL}_{\text{truss}_8}}$	$\frac{russ_8}{35} = 153$	3.94 ∙ psf		

Rehabilitation Cost Opinions

		3rd Street Bridge Description	: Rehabilita	ate bridge to		Date:	7/20/2015
		Option 2 - Rehabilitate for Pedestrian Use	accommo	date		Est. Bv:	ТЈМ
		•	pedestria	n use.		Check By:	
		COST ESTIMATE SHEET				,	
			-			Page 1 of	1
ITEM #	ITEM CODE	BID ITEM DESCRIPTION		QUANTITY	UNIT	RATE	TOTAL
1	2212-5070310	PATCH, FULL-DEPTH REPAIR		200	SY	101.18	20236.00
2	2301-1033100	STD/S-F PCC PAV'T, CL C CL 3, 10"		500	SY	45.47	22735.00
3	2401-6750001	REMVL (DECK & S.W.)		1	LS	40000	40000.00
4	2403-0100010	STRUCT CONC (BRIDGE)		50	CY	476.26	23813.00
5	2404-7775000	REINFORC STEEL		8000	LB	0.91	7280.00
6	2408-6772011	REPAIR BEAM, HEAT STRAIGHTEN		3	EA	29740.47992	89221.44
7	2408-7800000	STRUCTURAL STEEL		3100	LB	6	18600.00
8	2409-4575001	TREATED TIMBER+LUMBER		18.2	MFBM	9073.901905	165145.01
9	2501-8400172	TEMP SHORING		1	LS	200000	200000.00
10	2507-3250005	ENGINEER FABRIC		5000	SY	2.8	14000.00
11	2507-6800061	REVETMENT, CLASS E		4000	TON	39.04	156160.00
12	2533-4980005	MOBILIZATION		1	LS	113578.5682	113578.57
13		ENGINEERING SERVICES		1	LS	174153.8045	174153.80
14							
15							
16							
17							
18							
19							
20							
21							
22							
23							
24							
25							
26							
27							
28							
29							
30							
31							
32							
33							
34							
35							⊢I
36							⊢I
37							┝────┨
38							⊢I
39							
40							
41							
42							
43							<u> </u>
44							<u> </u>
45							<u> </u>
40							<u> </u>
47							⊢┨
40							
49							
50						.	1011000.00

		3rd Street Bridge Description	Rehabilit	ate bridge to		Date:	7/21/2015
C		Option 5 - Renabilitate for Venicular Use	accomm	odate venicular	-	ESI. By: Check By:	I JIVI
		COST ESTIMATE SHEET		collian use.	•	Check by.	
					•	Page 1 of	1
ITEM #	ITEM CODE	BID ITEM DESCRIPTION		QUANTITY	UNIT	RATE	TOTAL
1	2212-5070310	PATCH, FULL-DEPTH REPAIR		200	SY	101.18	20236.00
2	2301-1033100	STD/S-F PCC PAV'T, CL C CL 3, 10"		500	SY	45.47	22735.00
3	2403-0100010	STRUCT CONC (BRIDGE)		50	CY	476.26	23813.00
4	2404-7775000	REINFORC STEEL		8000	LB	0.91	7280.00
5	2408-6772011	REPAIR BEAM, HEAT STRAIGHTEN		3	EA	29740.47992	89221.44
6	2408-7800000	STRUCTURAL STEEL		120000	LB	6	720000.00
7	2501-8400172	TEMP SHORING		1	LS	200000	200000.00
8	2507-3250005	ENGINEER FABRIC		5000	SY	2.8	14000.00
9	2507-6800061	REVEIMENT, CLASS E		4000	ION	39.04	156160.00
10	2533-4980005			1	LS	188016.816	188016.82
11		ENGINEERING SERVICES		1	19	288292.4511	288292.45
12							
13							
14							
16							
17							
18							
19							
20							
21							
22							
23							
24							
25							
26							
27							
28							
29							
30							
32							
33							
34				1		1	
35						1	
36				l			
37							
38							
39							
40							
41							
42				}			
43							
44							
45 46				<u> </u>			
40	-			}			
48							
49				l			
50				ł		1	
				-		Total Cost \$	1729754.71

t	

3rd Street Bridge Option 4 - Replace w/ New Pedestrian Bridge

Description: Replace with 3 span Steel Truss bridge, 360' x14' for pedestrian use. Date: 7/21/2015 Est. By: Check By: TJM

COST ESTIMATE SHEET

			Page 1 of 1			
ITEM #	ITEM CODE	BID ITEM DESCRIPTION	QUANTITY	UNIT	RATE	TOTAL
1	2401-6745650	RMVL OF EXIST STRUCT	1	LS	65000	65000.00
2	2402-2720000	EXCAVATION, CL 20	500	CY	20.45	10225.00
3	2403-0100010	STRUCT CONC (BRIDGE)	840	CY	476.26	400058.40
4	2404-7775000	REINFORC STEEL	143000	LB	0.91	130130.00
5	2429-0000100	PRE-ENGINEERED STEEL TRUSS TRAIL BRDG,	3	EACH	160000	480000.00
6	2501-0201057	PILE, STEEL, HP 10X57	1200	LF	40.66	48792.00
7	2507-3250005	ENGINEER FABRIC	3000	SY	2.8	8400.00
8	2507-6800061	REVETMENT, CLASS E	2500	TON	39.04	97600.00
9	2533-4980005	MOBILIZATION	1	LS	186030.81	186030.81
10	<u> </u>	ENGINEERING SERVICES	1	LS	285247.242	285247.24
11						
12	!					
13	!					
15	!			(/		
16	<u> </u>			(/		
17	<u>ا</u> ــــــــــــــــــــــــــــــــــــ	<u> </u>		 /		
18	<u>ا</u> ــــــــــــــــــــــــــــــــــــ	<u> </u>		 /		
19	<u>ا</u> ا	L		()		
20	<u>ا</u> ـــــــــــا	<u> </u>		l!	I	
21	<u>ا</u> ــــــــــــــــــــــــــــــــــــ	L		l!	I	
22	<u>ا</u> ا	L				
23	ر ا			l	ļĮ	
24	ر ا			l	ļĮ	
25	ر ا			l	ļĮ	
26	ر ا			l	ļĮ	
27	,/			l		
28	ر ا			l	ļĮ	
29	,			l		
30	,/			l		
31	,/	l		I		
32	,/	l		I		
33	//	F		łł	l – – – I	
34	//	F		łł	l – – – I	
36	//	l		ł – – ł	l	
37	//	<u> </u>		ł – – ł	l – – I	
38	,			l – I		
39	/ [/]			l – – I		
40	,			l – I		
41	/			l – – I	1	
42	/ [/]			l – – I		
43	/ · · · · · ·				1	
44	/ · · · · · ·				1	
45	(l 1			1	
46	/ · · · · · · · · · · · · · · · · · · ·	l [1 1	1	
47	(l 1			1	
48	(l 1			1	
49	ا ا	1		1	1	
50	ا ا	1		1	l l	
				·	Total Cost \$	1711483 45

		3rd Street Bridge Description Option 5 - Replace In-Kind Description COST ESTIMATE SHEET Description	on: Rep Ster x40 ped	blace with 3 span el Truss bridge, 360' ' for vehicular and lestrian use.		Date: Est. By: Check By:	7/20/2015 TJM
				OUANTITY		Page 1 of	TOTAL
				QUANTITY		RATE 45.47	TUTAL
1	2301-1033100	STD/S-F PCC PAV1, CL C CL 3, 10"		500	SY	45.47	22735.00
2	2401-6745650			1	LS	65000	65000.00
3	2402-2720000			500		20.45	10225.00
4	2403-0100010			1200		476.26	571512.00
5	2404-7775000	REINFORG STEEL		204000	LB	0.91	185640.00
6	2408-7800000	STRUCTURAL STEEL		500000	LB	1.8	900000.00
/	2414-6424110			720		51.23	36885.60
8	2414-6445100			360		110.94	39938.40
9	2414-6625502			360		60	21600.00
10	2501-0201057	PILE, STEEL, HP 10X5/		3000		40.66	121980.00
11	2507-3250005			5000	SY	2.8	14000.00
12	2507-6800061	REVEIMENT, CLASS E		4000	ION	39.04	156160.00
13	2533-4980005			1	LS	321851.4	321851.40
15		ENGINEERING SERVICES		1	LS	493505.48	493505.48
16							
17							
18							
19							
20							
21							
22							
23							
24							
20							
20							
21							
20							
29							
31							
32							
33							
34							
35				1			
36							
37							
38							
39							
40							
41							
42							
43							
44							
45							
46							
47							
48							
49							
50							
						Total Cost \$	2961032.88

		3rd Street Bridge Option 6 - Replace w/ PPCB Bridge COST ESTIMATE SHEET	Description:	Replace v PPCB bri for vehicu pedestria	with 3 span dge, 360'x40' llar and n use.		Date: Est. By: Check By: Page 1 of	7/20/2015 TJM
ITEM #	ITEM CODE	BID ITEM DESCRIPTION			QUANTITY	UNIT	RATE	TOTAL
1	2301-1033100	STD/S-E PCC PAV'T_CL_C_CL_3_10"			500	SY	45 47	22735.00
2	2401-6745650	BMVL OF EXIST STRUCT			1	IS	65000	65000.00
- 3	2402-2720000	EXCAVATION CL 20			500	CY	20.45	10225.00
4	2402-2120000	STRUCT CONC (BRIDGE)			1300	CY	476.26	619138.00
5	2404-7775000	BEINEORC STEEL			207000	LB	0.91	188370.00
6	2407-0563120	BEAM PPC BTC120			18	FACH	26125	470250.00
7	2408-7800000	STRUCTURAL STEEL			4800	LB	1.31	6288.00
8	2414-6424110	CONC BARRIER RAIL			720	L F	51 23	36885.60
9	2414-6445100	STRUCTURAL STEEL PEDESTRIAN HAND RAIL			360	L F	110.94	39938 40
10	2414-6625502	STRUCT STEEL BAIL TRAFFIC			360	l F	60	21600.00
11	2501-0201057	PILE, STEEL, HP 10X57			3000	LF	40.66	121980.00
12	2507-3250005	ENGINEER FABRIC			5000	SY	2.8	14000.00
13	2507-6800061	REVETMENT, CLASS E			4000	TON	39.04	156160.00
14	2533-4980005	MOBILIZATION			1	LS	265885.5	265885.50
15		ENGINEERING SERVICES			1	LS	407691.1	407691.10
16								
17								
18								
19								
20								
21								
22								
23								
24								
25								
26								
27								
28								
29								
30								
31								
32								
33								
34								
35								
36								
3/								
38								
39								1
40								
41								
42								
43								
44								
40								
40								
4/								
40								
- 4 -9 50								
00							Total Cost \$	2446146.60

2008 FEMA FIS

FLOODING SOURCE			FLOODWAY		1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION			D
CROSS SECTION	DISTANCE ¹	WIDTH	SECTION AREA	MEAN VELOCITY	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE
		(FEET)	(SQ.FEET)	(FEET/SEC.)	(FEET NAVD)	(FEET NAVD)	(FEET NAVD)	(FEET)
CEDAR RIVER								
А	219.24	480	7,365	5.6	883.9	883.9	884.8	0.9
В	219.33	325	4,668	8.8	883.9	883.9	884.8	0.9
С	219.42	328	4,872	8.4	884.8	884.8	885.5	0.7
D	219.52	430	6.771	6.1	886.2	886.2	886.7	0.5
F	219.74	508	7,201	5.7	887.0	887.0	887.4	0.4
F	220.03	670	9,481	4.3	888.3	888.3	888.7	0.4
G	220.62	420	7,566	5.4	889.3	889.3	889.8	0.5
Ĥ	221.89	1.100	14,834	2.8	891.5	891.5	892.2	0.7
	222.76	1,650	17,935	23	892.8	892.8	893.6	0.8
	222.70	930	10 559	3.9	893.8	893.8	894.6	0.8
ĸ	223.07	1 7/9	17 227	2.4	895.2	895.2	896 1	0.0
	223.30	2 180	10 210	2.4	895.0	895.0	896.8	0.9
M	224.00	1 200	13,210	3.0	897.0	897.0	807.0	0.9
N	225.00	1,200	6 980	5.6	808.6	808.6	800.5	0.9
	223.03	440	0,900	3.0	090.0	000.0	099.0	0.9
	220.12	560	0.029	2.0	900.0	900.0	901.0	1.0
F	220.47	790	9,020	4.5	900.4	900.4	901.4	1.0
	227.14	700	7.054	5.0 5.5	901.8	901.0	902.0	1.0
R e	221.13	000	7,034	5.5	902.9	902.9	903.9	1.0
о т	220.10	900	5,930	0.0	903.8	903.0	904.7	0.9
	228.41	900	7,384	5.2	905.0	905.0	906.0	1.0
U	228.59	710	7,066	5.5	905.6	905.6	906.5	0.9
V	228.93	1,000	9,801	3.9	906.5	906.5	907.4	0.9
vv	229.16	700	8,663	4.5	906.7	906.7	907.7	1.0
X	229.39	700	10,492	3.7	907.3	907.3	908.2	0.9
Y	229.82	950	12,866	3.0	908.0	908.0	908.9	0.9
Z	230.08	470	8,336	4.6	908.6	908.6	909.5	0.9
I ES ABOVE MOUTH								
FEDERAL EMERGI		GENCY	FLOODWAY DATA					
	R COUNTY,	IA	CEDAR RIVER					

	FLOODING SOURCE			FLOODWAY			1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION			
	CROSS SECTION	DISTANCE ¹	WIDTH	SECTION AREA (SQ FEET)	MEAN VELOCITY (FEET/SEC.)	REGULATORY	WITHOUT FLOODWAY (FEET NAVD)	WITH FLOODWAY (EEET NAVD)	INCREASE	
	CEDAR RIVER				(1 22 1/020.)				(1221)	
	AA AB AC AD AE AF AG AH AI AJ AK AL AM AN AO AP AQ AR	230.26 230.52 230.67 230.90 231.00 231.18 231.56 232.09 232.41 232.70 233.02 233.87 234.26 235.11 236.33 236.56 236.91 237.05	550 346 510 960 1,028 1,130 1,050 605 1,250 1,150 1,300 1,710 1,650 1,790 1,190 1,170 369 990	9,216 5,709 8,259 13,972 15,652 16,295 11,610 9,253 14,655 13,400 18,936 20,874 18,437 19,746 13,638 13,179 5,691 13,693	4.2 6.8 4.7 2.8 2.5 2.4 3.3 4.2 2.6 2.9 2.0 1.8 2.1 2.0 2.8 2.9 6.7 2.8	909.0 909.5 915.2 915.9 916.0 916.1 916.4 917.3 917.7 917.9 918.5 919.1 919.7 920.9 922.8 923.4 924.1 925.3	909.0 909.5 915.2 915.9 916.0 916.1 916.4 917.3 917.7 917.9 918.5 919.1 919.7 920.9 922.8 923.4 924.1 925.3	909.8 910.3 915.3 916.2 916.3 916.4 916.6 917.8 918.4 918.6 919.1 919.8 920.4 921.7 923.7 924.3 925.0 925.9	$\begin{array}{c} 0.8\\ 0.8\\ 0.1\\ 0.3\\ 0.3\\ 0.2\\ 0.5\\ 0.7\\ 0.7\\ 0.7\\ 0.6\\ 0.7\\ 0.7\\ 0.8\\ 0.9\\ 0.9\\ 0.9\\ 0.9\\ 0.6\end{array}$	
TAI	FEDERAL EMERGENCY MANAGEMENT AGENCY			FLOODWAY DATA						
μBREMER COUNTY, IAωAND INCORPORATED AREASCE				CEDA	AR RIVER					

APPENDIX E DRAWINGS

JOB NO. 15-3055 DESIGNED BY TJM DRAWN BY TJM

VJ Engineering 2570 Holiday Road, Suite 10

NORTH SF	PAN 120'-0"						
	<u>و</u>						
	ABUT.						
	BRG.						
N- FOR- SUF	PERSTRUCTURE REPAIRS	-NEW BRIDGE					
		APPROACH					
/	REPAIR SPALLED AND	NEW					
	DELAMINATED AREAS	ABUTMENT SEAT					
	\ 						
	L						
	REMOVE SIDEWALK						
RE	EINFORCE BOTTOM FLANGE IN ALL						
FL	OOR BEAMS. REPLACE WELDED						
31	RINGER-FLOOR BEAM CONNECTIONS.						
	HEAT STRAICHTEN ON						
	CENTER SPAN						
₽14x18							
32 / I		•					
	ARS 2						
X^{γ}	NG25	\mathbf{X}					
/X	Kitt.						
	2CB						
2L5x3 ¹ ₂ x ¹ ₂		Δ					
GUSSET PLATES WITH							
OSS ON ALL SPANS							
TRENGTHENING & REPAIRS							
ſ	363'-0 x 19'-4 STEEL TRUS	SS BRIDGE					
3RD STREET SE OVER CEDAR RIVER							
	CITY OF WAVERI	_Y					
	OP HON Z REHABILITATE FOR PEDESTRIA	N USE					
	10-3000	1					

VJ Engineering 2570 Holiday Road, Suite 10 Coralville, Iowa – 319–338–493

JOB NO. 15-3055 DESIGNED BY TJM DRAWN BY TJM

VJ Engineering 2570 Holiday Road, Suite 10

