

BRIDGE EVALUATION & FEASIBILITY STUDY 3rd STREET SE OVER CEDAR RIVER FHWA #12250 WAVERLY, IOWA

July 22, 2015

SUBMITTED BY:

July 22, 2015

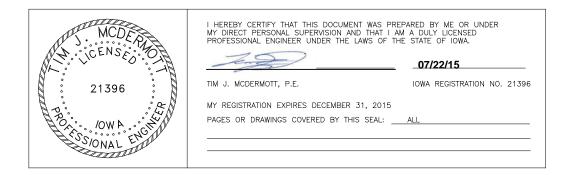
Phil Jones City Administrator Waverly, Iowa (319) 352-9211

Subject: Final Report 3rd St SE Bridge Evaluation & Feasibility Study City of Waverly, Iowa

Dear Phil Jones,

VJ Engineering (VJE) is pleased to submit this Final Report of the Bridge Evaluation and Feasibility Study performed on the 3rd St. SE Bridge over the Cedar River.

We appreciate you selecting VJ Engineering for this project and look forward to the opportunity to work with you again in the near future. If you have any questions about this report or require additional services, please call me at 319-338-4939.


Sincerely,

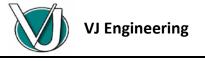

Tim McDermott, PE Structural Engineer/ Project Manager

Table of Contents

1.	PROJECT BACKGROUND	Page 3 - 5
	Bridge Description	
	Purpose	
2.	RECORDS REVIEW	Page 5 - 7
	Inspection Reports	
	Bridge Plans & Repair History	
	FEMA Flood Insurance Study	
3.	ANALYSIS	Page 7 - 13
	Procedure	
	Results	
4.	REHABILITATION ALTERNATIVES	Page 14 – 17
	Rehabilitation Items	
	Options	
	Feasibility	
5.	CONCLUSION & RECOMMENDATIONS	Page 18
6.	BRIDGE PHOTOS	Appendix A
7.	LOAD RATING CALCULATIONS	Appendix B
8.	REHABILITATION COST OPINIONS	Appendix C
9.	FEMA FLOOD INSURANCE STUDY	Appendix D
10	REHABILITATION/ REPLACEMENT DRAWINGS	Appendix E

PROJECT BACKGROUND

Bridge Description

4"ø PIN

EXP. END

The 3rd Street SE Bridge (originally known as the Harmon Street Bridge) is located in Waverly, Iowa and until 2015 carried vehicular traffic across the Cedar River. The bridge is 360' x 18' (with a 5' cantilevered sidewalk on the west side) and is comprised of (3) 120' steel through truss spans. Figures 1 & 2 show the elevation views of the 2 different truss types (East and West, respectively) used in each span and Figure 3

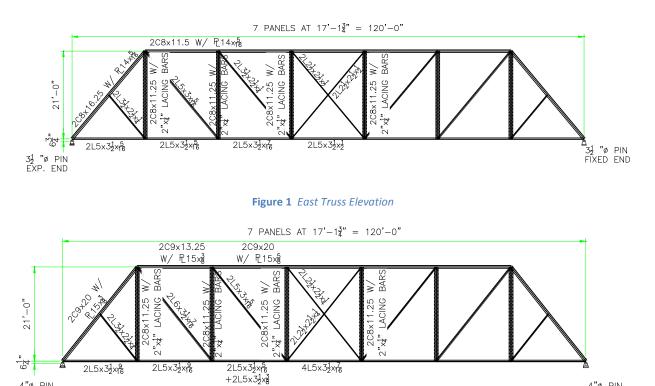


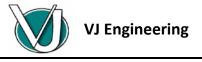
Figure 2 West Truss Elevation

4"ø PIN

FIXED END

		C9x13						
		W9x21						
ы _г	Ω Ω	W9x21						
2.0	¦ ≽	W9x21						
۾ ني	ര്ഹ്	W9x21						
	°. Š	W9x21						
4 0	μ Ω	W9x21						
6	π́≥́	W9x21						
÷		C12x20						
<u>*</u>		C5x6						
-67		₩8x18	₩8x18	₩8x18	₩8x18	W8x18	W8x18	W8x18
່ <mark>L</mark> ທີ		C8x11						

7 PANELS AT $17' - 1\frac{3}{4}" = 120' - 0"$


Figure 3 Floor System Plan

shows the floor system plan. The deck is open steel grating. The substructure consists of two concrete piers which are founded on spread footings, and concrete abutments at each end founded on spread footings. The bridge was constructed in 1917 and carried vehicular traffic until it was closed in February, 2015 due to advanced deterioration of the superstructure and substructure. The bridge is not currently listed on the National Registry of Historic Places, but is eligible to be listed.

<u>Purpose</u>

The superstructure has significant corrosion and section loss at connection plates and the southwest and northwest bearing connections have failed resulting in settlement of the truss. The bearings were observed to be longitudinally expanded at a low temperature which is the opposite direction they should be which may indicate the bearings have frozen up which prohibits longitudinal movement. Significant section loss was observed on many of the bearing pins. There is heavy pitting and significant section loss on floor beams and stringers and a few crack initiations were observed by the previous inspector. The piers have significant deterioration and spalled areas, particularly near the waterline and pier caps. The abutments are delaminated and have large vertical cracks with efflorescence. The general purpose of this report will be to perform an in depth evaluation and investigate the feasibility of rehabilitating or replacing the structure for either continued vehicular use or to be repurposed as a pedestrian bridge.

In order to determine the extent of the rehabilitation necessary, a structural analysis taking current condition into consideration is required. The structural analysis needs to consider both AASHTO pedestrian design live load and vehicular live loads per AASHTO *Load and Resistance Factor Rating of Highway Bridges (*LRFR). Specific areas which require repair or strengthening shall be noted on a plan and profile drawing.

Measureable section loss, cracking, or other deficiencies which affect load carrying capacities shall be quantified for the purpose of performing the load rating analysis.

To aid in selection of the most appropriate rehabilitation or replacement alternative, the following six alternatives will be investigated:

- 1. Do nothing.
- 2. Rehabilitate the bridge and repurpose as a pedestrian bridge.
- 3. Rehabilitate the bridge for vehicular and pedestrian use.
- 4. Replace the bridge with a new pedestrian bridge.
- 5. Replace the bridge "in-kind" for vehicular and pedestrian use.
- 6. Replace the bridge with a conventional modern bridge for vehicular and pedestrian use.

A cost estimate for the construction of the rehabilitation or replacement and anticipated construction schedule will be prepared for the six alternatives. A lifecycle cost assessment will also be performed for a 20 year design life, taking future maintenance costs into consideration for each alternative.

RECORDS REVIEW

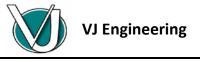
Inspection Reports

Previous Inspection Reports were reviewed and are summarized below. The number in parenthesis is the condition rating given by the previous inspector to each component on the 0-9 NBIS (National Bridge Inspection Standards) rating scale. A rating of 9 is excellent condition and 0 is failed condition.

- **Deck (7):** The deck is in satisfactory condition with some areas showing minor deterioration. The south pier joint cover plate on the top of the deck is loose and is vibrating the deck when traffic crosses.
- Superstructure (3):Significant pack rust typical at many connections. Pack rust
is causing distortion of plates built up near bearings and
bulging of pins. Significant section loss (including through
holes) of plates adjacent to the pins, and the connection has

failed at the southeast and northwest bearings of the south truss resulting in some settlement of the truss. The southwest bearing is near failure. Two additional plates were welded to the gusset plates directly above the bearing pin, at the east side of the south abutment during the 2006 repair in order to temporarily alleviate the potential for failure. Member U1:L2 on the east side of the south truss has slight sweep (out of plane bending) that is likely due to differential settlement of the truss at the failed bearings. There is section loss on some anchor bolts and nuts are not tight at several locations. The bearings are also tipped outward which is the opposite direction based on the current temperature. At the bottom of the diagonals, pack rust is causing distortion of up to approx. 3/8" of the connection angles and up to approx. 1/8" section loss. Pack rust is causing up to approx. 1/4" distortion of the tie plates on the diagonal members. The repair performed at several verticals along the west side is deteriorating. There is pack rust between the original and repair materials indicating failure of the welds. There is pack rust between the angles in the west bottom chord between panel points two and five causing distortion and section loss. The overhead bracing members have minor pack rust as well. There is a loose bolt at the bottom chord connection to vertical six in the center truss. west side. Several other bottom chord connections have heavy pitting including on the fasteners. There is impact damage to diagonal L4-U5 on the west side of the center truss, diagonal L3-U4 on the east side of the center truss, and minor impact damage to tie plates at other locations. There are several discrete locations of leaf rust and other deformation to tie plates. There is heavy pitting and significant section loss on floor beams and stringers. The flanges of the floor beams have the heaviest loss at the connections to the truss, but much of the section loss is not active and has been painted over. The webs have heavy pack rust and section loss at the connection angles to the stringers. The stringers have significant section loss in the flanges with some through holes. The webs have significant section loss especially at the connections to the floor beams.

There are two stringers in the south truss that have serious section loss at the web connection to the floor beam, one that is cracked and the other with a crack initiating. Many of the locations that were repaired have pack rust between the original repair materials indicating failure of the webs and new section loss. Significant deterioration of the stringer to floor beam connection angles, especially those with fasteners replaced by welds.


Substructure (4): Both abutments have vertical cracks with leaching. The north abutment has a large area that has been previously repaired, but is cracked and leaching again. There is significant delamination and spalling with some reinforcing exposed and corroded. The north back wall is cracked at the roadway adjacent to the bridge and appears to be crumbling. Areas of both piers near the waterline have large spalls, including a large spall in the north pier on the west end below the ice guard. The south pier has significant map cracking with leaching and the east end is spalling. The bridge seats are deteriorating especially on the south pier at the west bearing.

Bridge Plans & Repair History

The bridge plans and repair records were reviewed and determined to provide adequate dimensioning and member details to develop the structural models to be used for the load rating analysis. A site visit was still required to field measure deformations, section loss, and cracking. These deficiencies directly compromise the load carrying capacity of the bridge and were required to be quantified for use in the load rating analysis.

FEMA Flood Insurance Study (FIS)

A FEMA Flood Insurance Study (FIS) for Bremer County performed in 2008 was obtained and reviewed to determine if the bridge currently meets the Iowa DNR's criteria for minimum freeboard (vertical clearance to the Iow point of the bridge superstructure) of 3 feet above the design flood having a 2% chance of being exceeded in any given year (Q₅₀). Relevant data from the FIS is included in Appendix D. Figure 4 shows the design flood elevations for various design flows. The design elevation, which is based on the Q₅₀, is 907.1 feet.

Final Report – 3rd St SE Bridge Evaluation & Feasibility Study

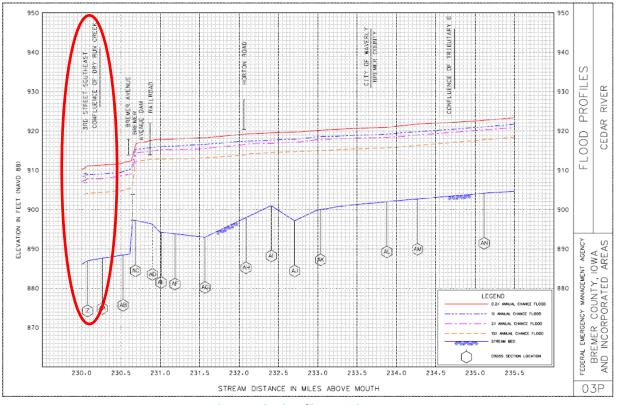
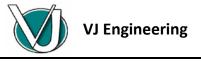


Figure 4 Flood Profiles at Bridge


The low structure elevation is 906.7 which does not provide any freeboard above the design elevation. To meet the DNR's freeboard criteria, the bridge would need to be raised 3'-5".

ANALYSIS

Procedure

The structural analysis was performed according to *AASHTO LRFR*. Using the geometry, member size data, and measured deficiencies, the trusses, stringers, and floor beams were modeled in the structural analysis software STAAD. The Ratings were calculated and the controlling ratings were taken as the minimums. The bearing pins and sidewalk brackets were also analyzed due to their deteriorated conditions.

For pedestrian use, the Inventory Rating represents the maximum pedestrian live load that the bridge can safely support for an indefinite period of time. The Operating Rating represents the absolute maximum pedestrian live load that the bridge can support for a short period of time. To meet pedestrian design live load criteria the Inventory Rating should be at least 90 psf. For vehicular use, the Inventory Rating Factor represents the

proportion of design vehicular live load that the bridge can safely support for an indefinite period of time. A Rating Factor greater than or equal to 1 means the bridge is sufficient for design vehicular live loads. If the Rating Factor is less than 1, the legal live loads need to be evaluated according to IDOT criteria to determine the appropriate weight restrictions. Analysis calculations are included in Appendix B.

Pedestrian Only Use

For the truss analysis, dead loads were taken from the plans. The design pedestrian live load per *AASHTO LRFD Bridge Design Specifications* is 90 psf distributed over the entire deck area. Load factors were applied according to *AASHTO LRFD* for the Strength I load combination which produces the maximum member stresses. The factored loads were then distributed evenly and applied to the bottom chord panel points. The analysis was then run in the truss model to determine the maximum axial forces in the truss members. The axial capacities were calculated for the truss members per *AASHTO LRFD* and compared to the maximum member forces from the truss model. From that comparison, the controlling member(s) was chosen as the one with the highest ratio of maximum force to axial capacity. Additional factors were then applied to the controlling member capacity per *AASHTO LRFR* to account for the condition and importance of that particular member. The Inventory and Operating Ratings were then calculated and reported in pounds per square foot.

The dead load acting on the stringers includes the deck, railing (external stringers), and the stringer self weight. The pedestrian live load is distributed across the stringer tributary area. The loads were factored for the Strength I load combination and the load applied uniformly along the stringer. The maximum bending moment was then calculated and compared to the bending capacity per *AASHTO LRFD* with the additional factors from *AASHTO LRFR* to account for the condition and importance of the member. The Inventory and Operating Ratings were then calculated and reported in pounds per square foot.

The dead load acting on the floor beams includes the deck, stringer weight, and self weight. The pedestrian live load is transferred from the stringers to the floor beams. The loads were factored for the Strength I load combination and applied as point loads at the stringer to floor beam connections. The maximum bending moment was then calculated and compared to the bending capacity per *AASHTO LRFD* with the additional factors from *AASHTO LRFR* to account for the condition and importance of the member. The Inventory and Operating Ratings were then calculated and reported in pounds per square foot.

Vehicular Use

For the truss analysis, dead loads were taken from the plans. The design live load per *AASHTO LRFD Bridge Design Specifications* is HL-93 which includes an evenly distributed lane load of 640 pounds per foot, an 8,000 pound axle, and two 32,000 pound axles spaced as shown in Figure 5. Load factors were applied according to *AASHTO LRFD* for the Strength I load combination which produces

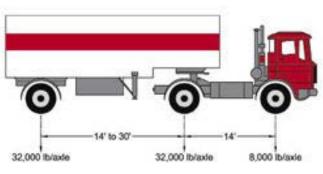


Figure 5 AASHTO HL-93 Axle Loads

the maximum member stresses. The factored loads were then applied to the bottom chord panel points. The analysis was then run in the truss model to determine the maximum axial forces in the truss members. The axial capacities

were calculated for the truss members per *AASHTO LRFD* and compared to the maximum member forces from the truss model. From that comparison, the controlling member(s) was chosen as the one with the highest ratio of maximum force to axial capacity. Additional factors are then applied to the controlling member capacity per *AASHTO LRFR* to account for the condition and importance of that particular member. The Inventory and Operating Rating Factors were then calculated and reported as unit-less proportions of the HL-93 live load. If the controlling Inventory Rating Factor is less than 1, the analysis should examine the load carrying capacity for Legal Loads which are shown in Figure 6. The load application is performed similarly to the Design Load and the results are reported in tons.

The dead load acting on the stringers includes the deck, railing (external

stringers), and the stringer self weight. The HL-93 design live load is positioned such that it produces the maximum bending stress in the stringer being analyzed. The loads were factored for the Strength I load combination and the load applied uniformly along the stringer. The maximum bending moment was then calculated and compared to the bending capacity per AASHTO LRFD with the additional factors from AASHTO LRFR to account for the condition and importance of the member. The Inventory and Operating Rating Factors were then calculated and reported as unit-less proportions of the HL-93 live load. If the controlling Inventory Rating

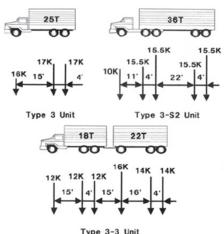


Figure 6 AASHTO Legal Loads

Factor is less than 1 the load carrying capacity for Legal Loads is then analyzed and reported in tons.

The dead load acting on the floor beams includes the deck, stringer weight, and self weight. The HL-93 design live load is positioned such that it produces the maximum bending stress in the floor beam. The loads were factored for the Strength I load combination and applied as point loads at the stringer to floor beam connections. The maximum bending moment was then calculated and compared to the bending capacity per *AASHTO LRFD* with the additional factors from *AASHTO LRFR* to account for the condition and importance of the member. The Inventory and Operating Rating Factors were then calculated and reported as unit-less proportions of the HL-93 live load. If the controlling Inventory Rating Factor is less than 1 the load carrying capacity for Legal Loads is then analyzed and reported in tons.

<u>Results</u>

Analysis calculations are shown in Appendix B. The following results summary were obtained from the analysis:

Pedestrian Only Use

East Truss -	The Inventory and Operating Ratings were calculated as 112 psf and 146 psf respectively. The analysis was controlled by truss member L2-L3 in tension.
West Truss -	The Inventory and Operating Ratings were calculated as 42 psf and 54 psf respectively. The analysis was controlled by truss member L3-L4 in tension.
Stringers - (interior)	The Inventory and Operating Ratings were calculated as 273 psf and 353 psf respectively.
Floor Beams -	The Inventory and Operating Ratings were calculated as 130 psf and 168 psf respectively.
Sidewalk Beam -	The Inventory and Operating Ratings were calculated as 87 psf and 112 psf respectively.
Truss Bearing - (southwest)	The Inventory and Operating Ratings were calculated as 111 psf and 145 psf respectively.

Taking the minimum Inventory Rating, the bridge rating is **42 psf** controlled by the west truss. This is 53% below the AASHTO pedestrian design live load of 90 psf. If the bridge is restricted to just the roadway (ie. blocking off the cantilevered sidewalk), the bridge rating is increased to 69 psf which is 23% below the design live load. To increase the bridge rating to the required 90 psf, in addition to repairs needed to the damaged and significantly deteriorated bridge elements, the west truss members circled in Figure 7 require strengthening on each of the three spans. The total number of members that require strengthening is 12.

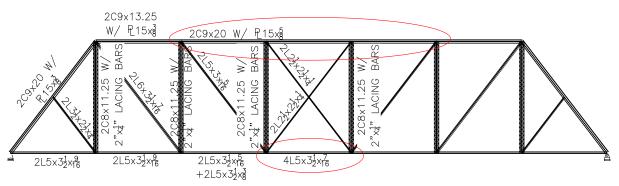


Figure 7 West Truss Members Requiring Strengthening for Pedestrian Live Load

Vehicular Use – Design Live Load

- East Truss -The Inventory and Operating Rating Factor Factors were
calculated as 0.43 and 0.55 respectively. The analysis was
controlled by truss member U2-L3 in tension.
- West Truss The Inventory and Operating Rating Factors were calculated as 0.29 and 0.37 respectively. The analysis was controlled by truss member L3-L4 in tension.
- Stringers -
(interior)The Inventory and Operating Rating Factors were calculated
as 0.7 and 0.91 respectively.
- Floor Beams The Inventory and Operating Rating Factors were calculated as **0.42** and **0.55** respectively.

Taking the minimum Inventory Rating Factor, the bridge rating factor is **0.29** controlled by the west truss. Because this is 71% below the AASHTO LRFD design live load, Legal Loads were required to be analyzed to determine the appropriate weight restrictions. The following summarizes the results of the Legal Load Analysis:

Vehicular Use – Legal Live Loads

Type 4 Truck -	The Type 4 Rating was calculated as 13 tons. The analysis was controlled by west truss member U2-U3 in compression.
Type 3S3 Truck -	The Type 3S3 Rating was calculated as 16 tons. The analysis was controlled by west truss member L3-L4 in tension.
Type 3-3 Truck -	The Type 3-3 Rating was calculated as 17 tons. The analysis was controlled by west truss member L3-L4 in tension.

To increase the bridge capacity to meet current legal and design live load criteria, in addition to repairs needed to the damaged and significantly deteriorated bridge elements, the following members require strengthening:

- 1. All interior stringers 147 total
- 2. All floor beams 18 total
- 3. East Truss members shown in Figure 8 36 total
- 4. West Truss members shown in Figure 9 36 total

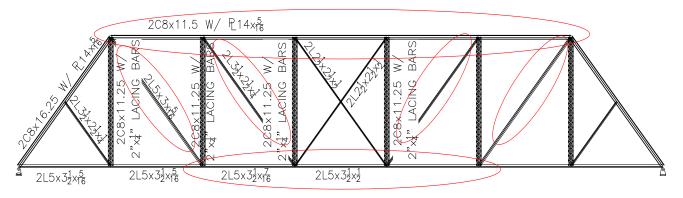


Figure 8 East Truss Members Requiring Strengthening for Vehicular Live Load

Final Report – 3rd St SE Bridge Evaluation & Feasibility Study

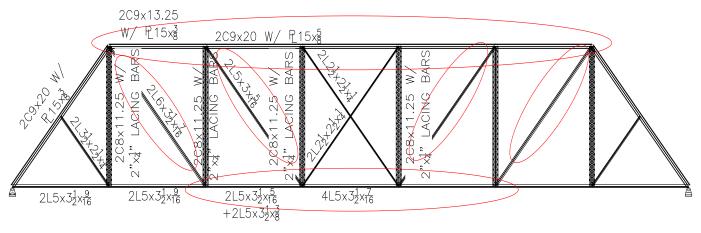


Figure 9 West Truss Members Requiring Strengthening for Vehicular Live Load

REHABILITATION ALTERNATIVES

Rehabilitation Items

The following rehabilitation items are required to bring the bridge up to code and mitigate the current unsafe conditions for the two rehabilitation alternatives (Options 2 & 3 in next section).

- 1. Substructure Rehabilitation
 - a. Pier Repairs
 - i. Replace pier caps to raise bridge profile by 3'-5".
 - ii. Repair spalled and delaminated areas on both piers.
 - iii. Add revetment at both piers.
 - b. Abutment Repairs
 - i. Repair spalled and delaminated areas on both abutments.
 - ii. Raise abutment seats to raise bridge profile.
- 2. Superstructure Rehabilitation
 - a. Truss Repairs/ Strengthening
 - i. Reinforce overstressed truss members.
 - ii. Repair/ reinforce Gusset plate connections that are distorted or have measureable section loss.

- iii. Heat straighten member U1-L2 on the south span, east truss, member L4-U5 on the center span, west truss, member L3-U4 on the center span, east truss, and any other diagonal members distorted ½" or more.
- iv. Replace southeast, southwest, and northwest bearings on south span.
- b. Floor System Repairs
 - i. Reinforce floor beam flanges in areas of measureable section loss.
 - ii. Install new stringers adjacent to stringers with significant section loss, and the two south span stringers with cracks observed.
 - iii. Replace the stringer to floor beam connections where previous repairs replaced fasteners with welds.
 - iv. Reinforce sidewalk bracket flanges in areas of measureable section loss OR remove sidewalk.
 - v. Replace sidewalk bracket to floor beam connections in areas of measureable section loss OR remove sidewalk.
- 3. Bridge Approaches
 - a. Regrade and pave approaches to raise bridge profile.

Options

To aid in selection of the most appropriate rehabilitation or replacement alternative, the following six options were considered:

Option 1: Do nothing. This option entails leaving the bridge as-is and keeping it closed to vehicular and pedestrian traffic indefinitely.

Option 2: Rehabilitate the bridge and repurpose as a pedestrian bridge. This option entails all of the rehabilitation items in the previous section. Additionally, the entire bridge deck and railings need replacement to accommodate pedestrian use.

Option 3: Rehabilitate the bridge for vehicular and pedestrian use. This option entails all of the rehabilitation items in the previous section. The amount of required rehabilitation items is significantly great for Option 3 than Option 2.

Option 4: Replace the bridge with a new pedestrian bridge. This option entails removing the existing bridge and substructure, and constructing a new 3 span, 360'x14' pre-engineered steel pony truss bridge for pedestrian use. The deck will be timber plank and the substructure will be reinforced concrete founded on steel piles. Similarly to the rehabilitation options (Option 2 & 3), the profile grade will be raised by 3'-5" to meet freeboard requirements.

Option 5: Replace the bridge "in-kind" for vehicular and pedestrian use. This option entails removing the existing bridge and substructure, and constructing a new geometrically similar bridge for vehicular and pedestrian use. The bridge will be a 3 span, 360'x40' steel truss bridge with similar panel spacing and height as the existing bridge. The bridge will be significantly wider than the existing bridge and have more substantial truss members and floor system beams. The roadway deck will be steel grating and the sidewalk will be concrete. The substructure will be reinforced concrete on steel piles and the profile grade will be raised similarly to the previous options.

Option 6: Replace the bridge with a conventional modern bridge for vehicular and pedestrian use. This option entails removing the existing bridge and substructure, and constructing a new 3 span, 360'x40' prestressed concrete beam bridge with sidewalk, for vehicular and pedestrian use. The substructure will be reinforced concrete on steel piles. The profile will be raised an additional 2' more than the previous options (5'-8" total) due to the depth of the beams.

Drawings for Options 2-6 are shown in Appendix E and itemized Cost Opinions for Options 2-6 are shown in Appendix C.

Feasibility

The cost opinions shown in Appendix C were estimated using data from recent bid letting items from similar projects, current Iowa DOT bid item averages, and contractor input. Due to the age of the existing bridge, there is limited service life remaining even after rehabilitating the bridge from its' current condition. That said, the cost opinion of Options 2 & 3 in comparison with the replacement options do not give a comprehensive cost analysis without considering the life-cycle cost. The current bridge design life, per *AASHTO LRFD*, is 75 years which shall be applicable to Options 4-6. It is anticipated that the remaining service life for Options 2 & 3 is 20 years, at which point it would be impractical to perform any further major rehabilitations as it was already rehabilitated in the 1970s.

The following table shows a more meaningful cost comparison of options by evaluating the life-cycle costs of a 20 year period. Also shown in the table are the historical implications and impact on the existing bridge for each of the options.

OPTION	DESCRIPTION	HISTORICAL	IMPACT ON EXISTING STRUCTURE	DESIGN LIFE OR REMAINING SERVICE LIFE	COST OF WORK ¹	FUTURE VALUE ²	LIFE- CYCLE COSTS ³
1	Do nothing.	Existing structure will be neglected.	None.	NA	\$0	\$0	\$0
2	Rehabilitate the existing bridge for pedestrian only use.	All historically significant elements of the bridge will be preserved.	This option will have minimal impact on the existing structure. Strengthening is minimal due to removal of sidewalk.	20 years	\$1,045,000	\$0	\$1,045,000
3	Rehabilitate the existing bridge for vehicular and pedestrian only use.	All historically significant elements of the bridge will be preserved.	Due to the large amount of strengthening required, the appearance of the existing structure will be altered significantly.	20 years	\$1,730,000	\$0	\$1,730,000
4	Replace existing bridge with a new 3 span, 360'x14' pre- engineered steel pony truss bridge with timber deck for pedestrian only use. Substructure will be reinforced concrete on steel piles.	All of the historical elements will be lost.	All existing bridge components will be lost.	75 years	\$1,711,000	\$1,254,733	\$1,118,169
5	Replace existing bridge with a new 3 span, 360'x40' steel truss bridge that replicates some of the geometry of the existing bridge, for vehicular and pedestrian use. The roadway deck will be steel grating and the sidewalk will be concrete. Substructure will be reinforced concrete on steel piles.	This option tries to replicate the existing structure. For replacement options, it is the most true to the original structure.	All existing bridge components will be lost.	75 years	\$2,961,000	\$2,171,400	\$1,936,099
6	Replace existing bridge with a new 3 span, 360'x40' prestressed, precast concrete beam bridge for vehicular and pedestrian use. Substructure will be reinforced concrete on steel piles.	All of the historical elements will be lost.	All existing bridge components will be lost.	75 years	\$2,446,000	\$1,793,733	\$1,599,358

1. Includes engineering and construction management.

 Value of remaining service life after 20 years.
 CURENT VALUE = FUTURE VALUE x 1/(1+r)ⁿ Current State & Local bonds interest rate of 3.82% used for r, 20 years used for n. LIFE CYCLE COSTS = COST OF WORK – CURRENT VALUE

CONCLUSION & RECOMENDATIONS

The 3rd Street Bridge should be considered a bridge of high historical significance being one of Iowa's few remaining major bridges of an archaic design that was dominant in the era of its' construction. The bridge is too iconic of a structure to neglect so Option 1 is not recommended. According to *Guidelines for Historic Bridge Rehabilitation and Replacement,* which is an AASHTO requested study as part of the National Cooperative Highway Research Program; none of the proposed rehabilitation items for Option 2 would negatively impact the historical significance of the bridge therefore it can retain its' eligibility to be listed on the National Register of Historic Places. Also, the comparatively low cost of construction make Option 2 a feasible alternative. Due to the significant amount of reinforcing required for Option 3, the historically significant components of the bridge would be altered such that it could potentially become ineligible to be listed on the National Register of Historic Places. For this reason and the high cost for a limited service life, Option 3 should not be considered feasible.

Options 4, 5, and 6 are all acceptable alternatives from an engineering standpoint as they are entirely new construction, but with the exception of Option 5 being an homage to the original structure, all of the historic elements of the original bridge would be lost. The high construction costs of Options 5 & 6 make them cost prohibitive alternatives. Although Option 4 has a comparatively high construction cost, when the life-cycle costs are considered it becomes a feasible alternative and is life-cycle cost competitive with Option 2.

Between the two feasible alternatives, Option 2 & 4, the decision of whether to rehabilitate or replace depends on the priorities of the City. Both options adhere to current design criteria for a pedestrian bridge. Option 2 has a lower construction cost but within its' anticipated 20 year remaining service life the life-cycle costs become very close. Option 2 would provide a wider deck, 19 ft. versus 14 ft., of the two options. If the City prefers constructing a bridge with a substantial design life over preservation of the historical aspects or sentimental value of the bridge, clearly Option 4 is the prevailing alternative. If historical preservation weighs heavier than the longer design life then Option 2 should be chosen.

Final Report – 3rd St SE Bridge Evaluation & Feasibility Study

East Elevation from South Embankment

Roadway Looking North

East Elevation – South Span

East Elevation – Center Span

East Elevation – North Span

South Span Floor System Looking North

Final Report – 3rd St SE Bridge Evaluation & Feasibility Study

Southwest Bearing at South Abut. – Major section loss

South Abut. Seat – Major cracking w/ efflorescence

South Abut. Back Wall – Major cracking w/ efflorescence

South Abut. – Large cracks, spalling w/ exposed rebar

Sidewalk Bracket @ S. Pier – Section loss through bott. flange S. Pier Cap – Major delamination, crushing. Loss of bearing

Final Report – 3rd St SE Bridge Evaluation & Feasibility Study

S. Pier, S. Wall – Delamination, spalling, cracking w/leaching S. Pier, West End – Major cracking w/ efflorescence

S. Pier, East End – Major spalling near waterline

S. Pier, N. Wall – Major cracking w/ efflorescence

North Pier, South Wall – Cracking w/ efflorescence

North Abutment – Major cracking w/ efflorescence

Final Report – 3rd St SE Bridge Evaluation & Feasibility Study

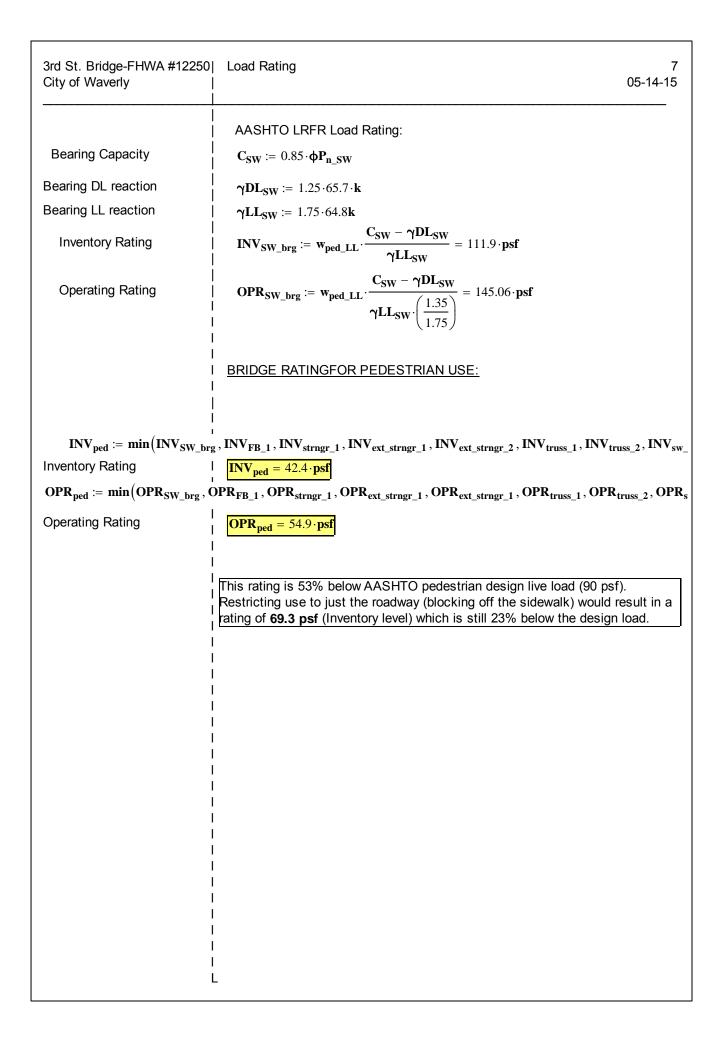
Sidewalk Bracket @ N. Pier - Section loss through bott. Flange West Truss, U2L3 - Distortion, out of plane bending

West Truss, U2L3 – Distortion, out of plane bending

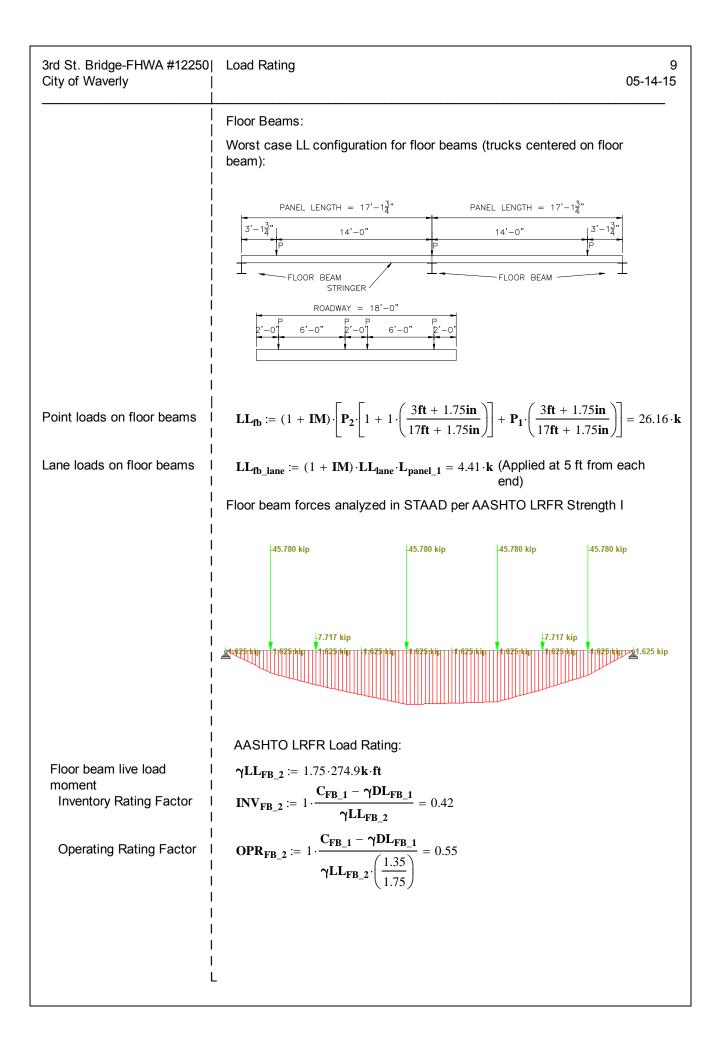
S.W. Bracket @ N. Span, 4th Panel – Section loss through bott. Flange

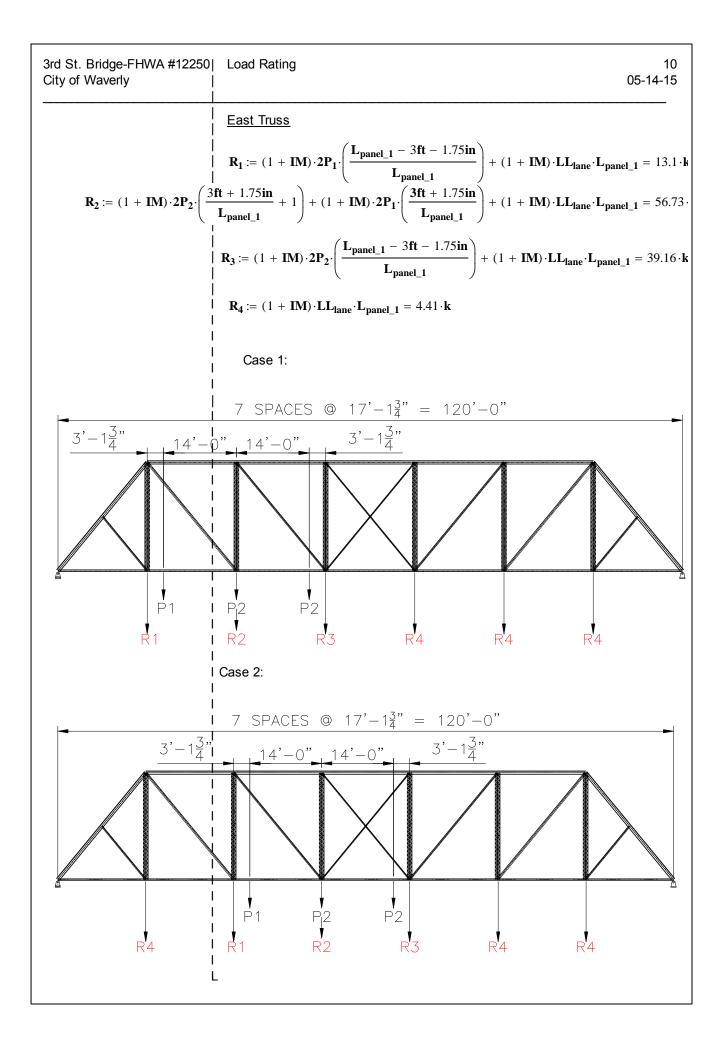
Typical corrosion on deck grating

3rd St. Bridge-FHWA #12250 City of Waverly	Load Rating	9							1 05-14-15
Span length Panel length Deck width	PEDESTRI $L_{span_1} := 1$ $L_{panel_1} :=$ $W_{deck} := 18$ $F_y := 30ksi$	20 ft 17.15 ft	ILY USE						
per IDOT HR-239 Distributed DL taken from original plan sht. 4 DL Panel Point Load	$\frac{\text{Dead Load}}{\text{w}_{\text{DL}_1} \coloneqq 575 \frac{\text{lb}}{\text{ft}}} \qquad \qquad$						·k		
AASHTO pedestrian LL per LRFD 3.6.1.6 LL Panel Point Load (east) LL Panel Point Load (west) 24.308		$\frac{W_{deck}}{2}$ $\left(\frac{W_{deck}}{2}\right)$ analyz ds show kip	$(\mathbf{f} + 5\mathbf{ft}) \cdot \mathbf{L}_{\mathbf{ft}}$	anel_1	•Wped_L	L = 21.61 HTO LRF		-24.30	08 kip 25 kip
2C8x16.25 (w/ 5/16 2C8x11.5 (w/ 5/16) 2C8x11.5 (w/ 5/16) 2C8x11.5 (w/ 5/16) 2C8x11.5 (w/ 5/16) 2L5x3.5x5/16 2L5x3.5x5/16 2L5x3.5x7/16 2L5x3.5x7/16 2L5x3.5x1/2 2C8x11.25 (w/ 2"x; 2C8x11.25 (w/ 2"x; 2C8x11.25 (w/ 2"x; 2C8x11.25 (w/ 2"x; 2L5x3x5/16 2L3.5x2.5x1/4 2L5x3.5x1/4 2L2.5x2.5x1/2	14 PL) U1-U2 14 PL) U2-U3 14 PL) U3-U4 L0-L1 L1-L2 L2-L3 L2-L3 I/4" lacing) L1-U1 I/4" lacing) L2-U2	A (in	L 2) (in) 4 162.66 1.1 205.75 1.1 205.75 1.1 205.75 1.2 205.75 1.2 205.75 1.2 205.75 0.1 205.75 0.1 205.75 0.1 205.75 0.1 205.75 0.1 205.75 0.1 205.75 0.1 205.75 0.1 205.75 0.1 205.75 0.1 205.75 0.1 205.75 0.1 205.75 0.1 205.75 0.1 205.75 0.1 205.75 0.1 205.75 0.1 205.75 0.1 205.75 0.1 252.00 0.1 252.31 .9 325.31	r (in) 3.16 3.16 3.16 3.16 1.02 1.00 1.00 3.16 3.16 3.16 3.16 3.16 3.16 3.16 3.16	R: 51.47 65.11 65.11 65.11 201.72 205.75 205.75 79.75 79.75 79.75 79.75 382.72 445.63 439.61	Allowable Comp. øcPn k 336.48 249.24 249.24 249.24 28.40 28.40 42.70 42.70 134.98 134.98 134.98 134.98 7.41 3.30 5.26	Allowable Tension øyFyAg k 399.00 316.92 316.92 316.92 145.92 145.92 228.29 228.29 228.29 188.39 188.39 188.39 188.39 137.09 82.65 128.25	ACTUAL LOAD ?iPu k 141.9 149.5 179.4 177.8 -89.7 -89.7 -89.7 -149.5 -181 -36.6 36.6 2 -94.6 -47.3 2.6	S.R. 0.42 0.60 0.72 0.71 0.61 0.61 0.65 0.79 0.19 0.27 0.01 0.69 0.57 0.49

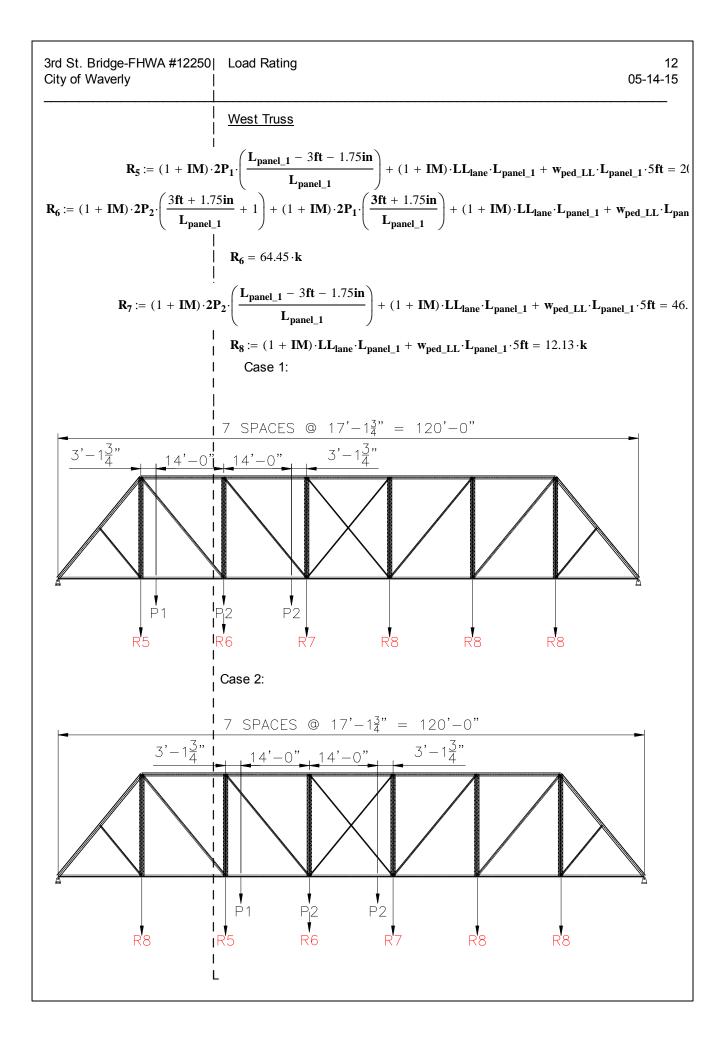

ity of Waverly	A #12250	Load	d Rati	ng							05-14
		 Men	nber L	.2-L3 c	ontrols						
		 AAS	внто	LRFR	Pedestri	an Lo	ad Ratir	ng:			
Condition Factor		 00 t		:= 0.85							
System Factor		-	$\varphi_{c_truss_1} := 0.85$								
oystem r dotor		I –	$\boldsymbol{\varphi}_{s_truss_1} \coloneqq 0.9$ $\mathbf{C}_{truss_1} \coloneqq \min(0.85, \boldsymbol{\varphi}_{c_truss_1} \cdot \boldsymbol{\varphi}_{s_truss_1}) \cdot 228.3 \mathbf{k}$								
L2-L3 Capacity		C _{tru}	ss_1 :=	min (0	$0.85, \varphi_{c_t}$	russ_1	φs_truss_	$(1) \cdot 228.3 k$			
L2-L3 DL		¦ γDI	-truss_	1 ≔ 1.2	5·40.2 k						
L2-L3 LL		γLI	truce	:= 1.7	5∙56.7 k						
Inventory Rating						uss_1 -	γDL _{tru}	$\frac{1}{1} = 112.$	83∙ psf		
Operating Rating		OPI 	R _{truss_}	1 := w _p	$ed_{LL} \cdot \frac{C_{ti}}{\gamma}$	russ_1 ⁻ LL _{trus}	$-\gamma DL_{tr}$	$\frac{\text{uss}_1}{5} = 146$	5.27 ∙ psf		
		1			•	ti ua	··· (1.7	5)			
		<u>We</u>	est Tru	<u>JSS</u>							
					alyzed in shown)	STAA	AD per A	ASHTO L	RFD Stren	gth I	
	- I2	7.818	kin	37.818	kin	37.81	Phin 13	37.818 kip	37.818	kin	
	-37.818 kij	Ϋ́ Γ		кір	51.0101	мр	-51.01		71.010 Kip	57.01	кір
	27 275 ki		7 275	kio	27 275	kin	27 27	5 kin 1	7 275 kin	27.37	5 kin
			мр							, mp	
			\mathbf{X}								
						<					λ
						× 1		· I			
						\sim					
		\sum					\bigvee			\mathbf{V}	
										\mathbf{V}	
		Anal	lysis l	Results	s per AAS	бнто	LRFR:		/	V	
		<u>;</u> Anal	lysis I	Results	s per AAS	бнто	LRFR:	Allowable	Allowable	ACTUAL	
		<u>;</u> Anal	lysis I		•		LRFR:	Comp.	Tension	LOAD	
		<u>;</u> Anal	lysis I	Ag	L	r		Comp. _{øc} P _n	Tension ø _y F _y A _g	LOAD ?iPu	SR
2C9x20 (w/ 3/8x15 l		Anal	lysis I		•		LRFR: KL/r 47.28	Comp.	Tension	LOAD	S.R. 0.63
2C9x13.25 (w/ 3/8x	15 PL)	L0-U1 U1-U2	TC	Ag (in^2) 16.4 12.6	L (in) 162.66 205.75	r (in) 3.44 3.56	KL/r 47.28 57.79	Comp. ø _c P _n k 402.13 293.09	Tension øyFyAg k 468.26 358.25	LOAD ? _i P _u k 252.5 266.1	0.63 0.91
2C9x13.25 (w/ 3/8x 2C9x13.25 (w/ 3/8x	15 PL) 15 PL)	L0-U1 U1-U2 U2-U3	TC TC TC	Ag (in^2) 16.4 12.6 12.6	L (in) 162.66 205.75 205.75	r (in) 3.44 3.56 3.56	KL/r 47.28 57.79 57.79	Comp. øcPn k 402.13 293.09 293.09	Tension øy F y A g k 468.26 358.25 358.25	LOAD ?iPu k 252.5 266.1 319.3	0.63 0.91 1.09
2C9x13.25 (w/ 3/8x 2C9x13.25 (w/ 3/8x 2C9x13.25 (w/ 3/8x	15 PL) 15 PL)	L0-U1 U1-U2 U2-U3 U3-U4	TC TC TC TC TC	Ag (in^2) 16.4 12.6 12.6 12.6	L (in) 162.66 205.75 205.75 205.75	r (in) 3.44 3.56 3.56 3.56	KL/r 47.28 57.79 57.79 57.79	Comp. øcPn k 402.13 293.09 293.09 293.09	Tension øyFyAg k 468.26 358.25 358.25 358.25	LOAD ? _i P _u k 252.5 266.1 319.3 316.5	0.63 0.91 1.09 1.08
2C9x13.25 (w/ 3/8x 2C9x13.25 (w/ 3/8x 2C9x13.25 (w/ 3/8x 2C9x13.25 (w/ 3/8x 2L5x3.5x9/16	15 PL) 15 PL)	L0-U1 U1-U2 U2-U3 U3-U4 L0-L1	TC TC TC TC TC BC	Ag (in^2) 16.4 12.6 12.6 12.6 11.6	L (in) 162.66 205.75 205.75 205.75 205.75	r (in) 3.44 3.56 3.56 3.56 0.97	KL/r 47.28 57.79 57.79 57.79 212.11	Comp. øcPn k 402.13 293.09 293.09 293.09 58.19	Tension øyFyAg k 468.26 358.25 358.25 358.25 358.25 330.60	LOAD ?iPu k 252.5 266.1 319.3 316.5 -159.7	0.63 0.91 1.09 1.08 0.48
2C9x13.25 (w/ 3/8x 2C9x13.25 (w/ 3/8x 2C9x13.25 (w/ 3/8x 2L5x3.5x9/16 2L5x3.5x9/16	15 PL) 15 PL) 15 PL)	L0-U1 U1-U2 U2-U3 U3-U4 L0-L1 L1-L2	TC TC TC TC TC BC BC	A g (in^2) 16.4 12.6 12.6 12.6 11.6 11.6	L (in) 162.66 205.75 205.75 205.75 205.75 205.75	r (in) 3.44 3.56 3.56 3.56 0.97 0.97	KL/r 47.28 57.79 57.79 57.79 212.11 212.11	Comp. øcPn k 402.13 293.09 293.09 293.09 58.19 58.19	Tension øyFyAg k 468.26 358.25 358.25 358.25 358.25 330.60 330.60	LOAD ?iPu k 252.5 266.1 319.3 316.5 -159.7 -159.7	0.63 0.91 1.09 1.08 0.48 0.48
2C9x13.25 (w/ 3/8x 2C9x13.25 (w/ 3/8x 2C9x13.25 (w/ 3/8x 2L5x3.5x9/16 2L5x3.5x9/16 2L5x3.5x5/16 + 2L5	15 PL) 15 PL) 15 PL)	LO-U1 U1-U2 U2-U3 U3-U4 LO-L1 L1-L2 L2-L3	TC TC TC TC BC BC BC BC	A g (in^2) 16.4 12.6 12.6 11.6 11.6 11.2	L (in) 162.66 205.75 205.75 205.75 205.75 205.75 205.75	r (in) 3.44 3.56 3.56 3.56 0.97 0.97 1.02	KL/r 47.28 57.79 57.79 57.79 212.11 212.11 201.72	Comp. ¢cPn k 402.13 293.09 293.09 293.09 58.19 58.19 62.23	Tension øyFyAg k 468.26 358.25 358.25 358.25 330.60 330.60 319.77	LOAD ?iPu k 252.5 266.1 319.3 316.5 -159.7 -159.7 -266.1	0.63 0.91 1.09 1.08 0.48 0.48 0.83
2C9x13.25 (w/ 3/8x 2C9x13.25 (w/ 3/8x 2C9x13.25 (w/ 3/8x 2L5x3.5x9/16 2L5x3.5x9/16 2L5x3.5x5/16 + 2L5 4L5x3.5x7/16	15 PL) 15 PL) 15 PL) 15 PL)	LO-U1 U1-U2 U2-U3 U3-U4 LO-L1 L1-L2 L2-L3 L3-L4	TC TC TC TC BC BC BC BC BC	A g (in ²) 16.4 12.6 12.6 12.6 11.6 11.6 11.2 10.2	L (in) 162.66 205.75 205.75 205.75 205.75 205.75 205.75 205.75 205.75	r (in) 3.44 3.56 3.56 3.56 0.97 0.97 1.02 1.02	KL/r 47.28 57.79 57.79 212.11 212.11 201.72 201.72	Comp. ¢cPn k 402.13 293.09 293.09 293.09 58.19 58.19 62.23 56.80	Tension øyFyAg k 468.26 358.25 358.25 358.25 330.60 330.60 319.77 291.84	LOAD ?iPu k 252.5 266.1 319.3 316.5 -159.7 -159.7 -266.1 -322.2	0.63 0.91 1.09 1.08 0.48 0.48 0.83 1.10
2C9x13.25 (w/ 3/8x 2C9x13.25 (w/ 3/8x 2C9x13.25 (w/ 3/8x 2L5x3.5x9/16 2L5x3.5x9/16 2L5x3.5x5/16 + 2L5 4L5x3.5x7/16 2C8x11.25 (w/ 2"x1)	15 PL) 15 PL) 15 PL) ix3.5x3/8 /4" lacing)	L0-U1 U1-U2 U2-U3 U3-U4 L0-L1 L1-L2 L2-L3 L3-L4 L1-U1	TC TC TC TC BC BC BC BC BC Vert	A g (in ²) 16.4 12.6 12.6 12.6 11.6 11.6 11.2 10.2 6.61	L (in) 162.66 205.75 205.75 205.75 205.75 205.75 205.75 205.75 205.75 205.75	r (in) 3.44 3.56 3.56 3.56 0.97 0.97 1.02 1.02 1.02 3.16	KL/r 47.28 57.79 57.79 212.11 212.11 201.72 201.72 79.75	Comp. ¢cPn k 402.13 293.09 293.09 293.09 58.19 58.19 62.23 56.80 134.98	Tension øyFyAg k 468.26 358.25 358.25 358.25 330.60 330.60 319.77 291.84 188.39	LOAD ?iPu k 252.5 266.1 319.3 316.5 -159.7 -159.7 -266.1 -322.2 -65.2	0.63 0.91 1.09 1.08 0.48 0.48 0.83 1.10 0.35
2C9x13.25 (w/ 3/8x 2C9x13.25 (w/ 3/8x 2C9x13.25 (w/ 3/8x 2L5x3.5x9/16 2L5x3.5x9/16 2L5x3.5x5/16 + 2L5 4L5x3.5x7/16 2C8x11.25 (w/ 2"x1, 2C8x11.25 (w/ 2"x1,	15 PL) 15 PL) 15 PL) ix3.5x3/8 /4" lacing) /4" lacing)	L0-U1 U1-U2 U2-U3 U3-U4 L0-L1 L1-L2 L2-L3 L3-L4 L1-U1 L2-U2	TC TC TC TC BC BC BC BC BC Vert Vert	Ag (in^2) 16.4 12.6 12.6 12.6 11.6 11.6 11.2 10.2 6.61 6.61	L (in) 162.66 205.75 205.75 205.75 205.75 205.75 205.75 205.75 205.75 205.75 205.75 205.75 205.75	r (in) 3.44 3.56 3.56 3.56 0.97 0.97 1.02 1.02 3.16 3.16	KL/r 47.28 57.79 57.79 212.11 212.11 201.72 201.72 79.75 79.75	Comp. ¢cPn k 402.13 293.09 293.09 293.09 58.19 58.19 62.23 56.80 134.98 134.98	Tension øyFyAg k 468.26 358.25 358.25 358.25 330.60 330.60 319.77 291.84 188.39 188.39	LOAD ?iPu k 2552.5 266.1 319.3 316.5 -159.7 -159.7 -266.1 -322.2 -65.2 65.2	0.63 0.91 1.09 1.08 0.48 0.48 0.83 1.10 0.35 0.48
2C9x13.25 (w/ 3/8x 2C9x13.25 (w/ 3/8x 2C9x13.25 (w/ 3/8x 2L5x3.5x9/16 2L5x3.5x9/16 2L5x3.5x5/16 + 2L5 4L5x3.5x7/16 2C8x11.25 (w/ 2"x1, 2C8x11.25 (w/ 2"x1, 2C8x11.25 (w/ 2"x1,	15 PL) 15 PL) 15 PL) ix3.5x3/8 /4" lacing) /4" lacing)	L0-U1 U1-U2 U2-U3 U3-U4 L0-L1 L1-L2 L2-L3 L3-L4 L1-U1 L2-U2 L3-U3	TC TC TC TC BC BC BC BC BC vert vert vert	Ag (in^2) 16.4 12.6 12.6 11.6 11.6 11.6 11.2 0.2 6.61 6.61 6.61	L (in) 162.66 205.75 205.75 205.75 205.75 205.75 205.75 205.75 205.75 205.75 205.75 205.75 205.75	r (in) 3.44 3.56 3.56 3.56 0.97 0.97 1.02 1.02 3.16 3.16 3.16	KL/r 47.28 57.79 57.79 57.79 212.11 212.11 201.72 201.72 79.75 79.75 79.75	Comp. ¢cPn k 402.13 293.09 293.09 293.09 58.19 58.19 62.23 56.80 134.98 134.98 134.98	Tension øyFyAg k 468.26 358.25 358.25 358.25 330.60 330.60 319.77 291.84 188.39 188.39 188.39	LOAD ?iPu k 2552.5 266.1 319.3 316.5 -159.7 -159.7 -266.1 -322.2 -65.2 65.2 3.5	0.63 0.91 1.09 1.08 0.48 0.48 0.83 1.10 0.35 0.48 0.03
2C9x13.25 (w/ 3/8x 2C9x13.25 (w/ 3/8x 2C9x13.25 (w/ 3/8x 2L5x3.5x9/16 2L5x3.5x9/16 2L5x3.5x5/16 + 2L5 4L5x3.5x7/16 2C8x11.25 (w/ 2"x1, 2C8x11.25 (w/ 2"x1,	15 PL) 15 PL) 15 PL) ix3.5x3/8 /4" lacing) /4" lacing)	L0-U1 U1-U2 U2-U3 U3-U4 L0-L1 L1-L2 L2-L3 L3-L4 L1-U1 L2-U2	TC TC TC TC BC BC BC BC BC Vert Vert	Ag (in^2) 16.4 12.6 12.6 12.6 11.6 11.6 11.2 10.2 6.61 6.61	L (in) 162.66 205.75 205.75 205.75 205.75 205.75 205.75 205.75 205.75 205.75 205.75 205.75 205.75	r (in) 3.44 3.56 3.56 3.56 0.97 0.97 1.02 1.02 3.16 3.16	KL/r 47.28 57.79 57.79 212.11 212.11 201.72 201.72 79.75 79.75	Comp. ¢cPn k 402.13 293.09 293.09 293.09 58.19 58.19 62.23 56.80 134.98 134.98	Tension øyFyAg k 468.26 358.25 358.25 358.25 330.60 330.60 319.77 291.84 188.39 188.39	LOAD ?iPu k 2552.5 266.1 319.3 316.5 -159.7 -159.7 -266.1 -322.2 -65.2 65.2	0.63 0.91 1.09 1.08 0.48 0.48 0.83 1.10 0.35 0.48

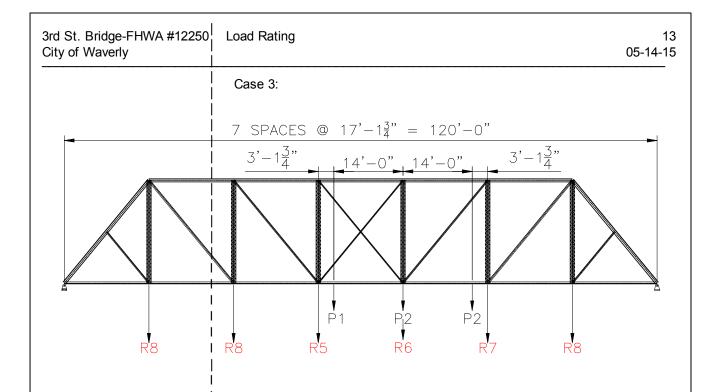
3rd St. Bridge-FHWA #12250 City of Waverly	Load Rating 3 05-14-15
	Member L3-L4 controls AASHTO LRFR Pedestrian Load Rating:
L3-L4 Capacity	$\mathbf{C}_{\mathbf{truss}_2} := \min(0.85, \varphi_{\mathbf{c}_{\mathbf{truss}_1}} \cdot \varphi_{\mathbf{s}_{\mathbf{truss}_1}}) \cdot 291.8\mathbf{k}$
L3-L4 DL	$\gamma \mathbf{DL}_{\mathbf{truss 2}} := 1.25 \cdot 108.2 \mathbf{k}$
L3-L4 LL	$\gamma LL_{truss 2} := 1.75 \cdot 106.8 k$
Inventory Rating	$INV_{truss_2} := w_{ped_LL} \cdot \frac{C_{truss_2} - \gamma DL_{truss_2}}{\gamma LL_{truss_2}} = 42.36 \cdot psf$
Operating Rating	$OPR_{truss_2} \coloneqq w_{ped_LL} \cdot \frac{C_{truss_2} - \gamma DL_{truss_2}}{\gamma LL_{truss_2} \cdot \left(\frac{1.35}{1.75}\right)} = 54.92 \cdot psf$
	Floor System
	Exterior Stringers:
Distributed DL	$\mathbf{w}_{\mathbf{DL_1_ext_strngr}} := \frac{\mathbf{w}_{\mathbf{DL_1}}}{\mathbf{W}_{\mathbf{deck}}} \cdot \frac{(2\mathbf{ft} + 5\mathbf{in})}{2} = 38.6 \frac{\mathbf{lb}}{\mathbf{ft}}$
Distributed LL	$\mathbf{w}_{\mathbf{LL}_1_ext_strngr} := \mathbf{w}_{\mathbf{ped}_\mathbf{LL}} \cdot \frac{(2\mathbf{ft} + 5\mathbf{in})}{2} = 108.75 \frac{\mathbf{lb}}{\mathbf{ft}}$
	Stringer forces analyzed in STAAD per AASHTO LRFR Pedestrian Strength I
	Mz(kip-in) 150 ¬
	100100
	50
	$1 - \frac{8.57}{5} - 10 - 15 - 17.1 - 50$
	50 - 5 10 15 17.1_50 100100
	-106 -150 -150 -150 -150 -150 -150 -150 -150
	East exterior stringer channels are C9x13.
	$\mathbf{Z}_{\mathbf{x}_C9\mathbf{x13}} \coloneqq 12.6\mathbf{in}^3$
Nominal flexural resistance	$\phi \mathbf{M}_{n_ext_strngr_1} := \mathbf{F}_{\mathbf{y}} \cdot \mathbf{Z}_{\mathbf{x}_C9\mathbf{x}13} = 31.5 \cdot \mathbf{ft} \cdot \mathbf{k}$
	-


3rd St. Bridge-FHWA #12250 City of Waverly	Load Rating 4 05-14-15
	AASHTO LRFR Pedestrian Load Rating:
Condition Factor	$\boldsymbol{\varphi}_{c_ext_strngr_1} \coloneqq 0.85$
System Factor	$\varphi_{s_ext_strngr_1} := 1$
Exterior Stringer Capacity	$C_{ext_strngr_1} := \varphi_{c_ext_strngr_1} \cdot \varphi_{s_ext_strngr_1} \cdot \varphi M_{n_ext_strngr_1}$
Exterior Stringer DL moment	$\gamma DL_{ext \ strngr \ 1} := 1.25 \cdot 1.43 \mathbf{ft} \cdot \mathbf{k}$
Exterior Stringer LL moment	$\gamma LL_{ext_strngr_1} := 1.75 \cdot 4.01 \mathbf{k} \cdot \mathbf{ft}$
Inventory Rating	$INV_{ext_strngr_1} := w_{ped_LL} \cdot \frac{C_{ext_strngr_1} - \gamma DL_{ext_strngr_1}}{\gamma LL_{ext_strngr_1}} = 320.47 \cdot psf$
Operating Rating	$OPR_{ext_strngr_1} := w_{ped_LL} \cdot \frac{C_{ext_strngr_1} - \gamma DL_{ext_strngr_1}}{\gamma LL_{ext_strngr_1} \cdot \left(\frac{1.35}{1.75}\right)} = 415.42 \cdot psf$
	Interior Stringers:
Distributed DL	$\mathbf{w}_{\mathbf{DL_1_strngr}} \coloneqq \frac{\mathbf{w}_{\mathbf{DL_1}}}{\mathbf{W}_{\mathbf{deck}}} \cdot (2\mathbf{ft} + 5\mathbf{in}) = 77.2 \frac{\mathbf{lb}}{\mathbf{ft}}$
Distributed LL	$\mathbf{w}_{\mathbf{LL}_1_\mathbf{strngr}} := \mathbf{w}_{\mathbf{ped}_\mathbf{LL}} \cdot (2\mathbf{ft} + 5\mathbf{in}) = 217.5 \frac{\mathbf{lb}}{\mathbf{ft}}$
	Stringer forces analyzed in STAAD per AASHTO LRFR Pedestrian Strength I Mz(kip-in)
	$\begin{array}{c}300\\200\\100\\1\\1\\0\\200\\300\end{array}$
	Interior stringers are I9x21
	$Z_{x 19x21} := 21.7 \text{in}^3$
Nominal flexural resistance I	$\phi \mathbf{M}_{n_strngr_1} := \mathbf{F}_{\mathbf{y}} \cdot \mathbf{Z}_{\mathbf{x_19x21}} = 54.25 \cdot \mathbf{ft} \cdot \mathbf{k}$ AASHTO LRFR Load Rating:
Stringer Capacity	$C_{strngr_1} := \varphi_{c_ext_strngr_1} \cdot \varphi_{s_ext_strngr_1} \cdot \varphi M_{n_strngr_1}$
Stringer DL moment	$\gamma DL_{strngr_1} := 1.25 \cdot 2.83 ft \cdot k$
Stringer LL moment	$\gamma LL_{strngr_1} := 1.75 \cdot 8.02 \mathbf{k} \cdot \mathbf{ft}$
Inventory Rating	$INV_{strngr_1} := w_{ped_LL} \cdot \frac{C_{strngr_1} - \gamma DL_{strngr_1}}{\gamma LL_{strngr_1}} = 273.01 \cdot psf$
Operating Rating I I I L	$\mathbf{OPR}_{strngr_1} \coloneqq \mathbf{w}_{ped_LL} \cdot \frac{\mathbf{C}_{strngr_1} - \gamma \mathbf{DL}_{strngr_1}}{\gamma \mathbf{LL}_{strngr_1} \cdot \left(\frac{1.35}{1.75}\right)} = 353.91 \cdot \mathbf{psf}$


3rd St. Bridge-FHWA #12250 City of Waverly	Load Rating 5 05-14-15
	Interior Stringers (at C.L. of west truss):
Distributed DL	$\mathbf{w}_{\mathbf{DL}_2_ext_strngr} := \frac{\mathbf{w}_{\mathbf{DL}_2}}{\mathbf{W}_{\mathbf{deck}}} \cdot (2\mathbf{ft} + 5\mathbf{in}) = 171.18 \frac{\mathbf{lb}}{\mathbf{ft}}$
Distributed LL	$\mathbf{w}_{LL_2_ext_strngr} := \mathbf{w}_{ped_LL} \cdot (2\mathbf{ft} + 5\mathbf{in}) = 217.5 \frac{\mathbf{lb}}{\mathbf{ft}}$
	Stringer forces analyzed in STAAD per AASHTO LRFR Pedestrian Strength I
	Mz(kip-in)
	$\begin{bmatrix} 300\\200 \end{bmatrix}$
	100
	$1 = \frac{8.57}{10} = 10 = 15 = 70$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	20026320020
	Stringers are C12x20
	$\mathbf{Z}_{x_{c12x20}} := 25.6 \text{in}^3$
ہ Nominal flexural resistance l ا	$\mathbf{\phi}\mathbf{M}_{\mathbf{n}_ext_strngr_2} := \mathbf{F}_{\mathbf{y}} \cdot \mathbf{Z}_{\mathbf{x}_C12x20} = 64 \cdot \mathbf{ft} \cdot \mathbf{k}$
	AASHTO LRFR Load Rating:
Stringer Capacity	$C_{ext_strngr_2} := \phi_{c_ext_strngr_1} \cdot \phi_{s_ext_strngr_1} \cdot \phi M_{n_ext_strngr_2}$
Stringer DL moment	$\gamma \mathbf{DL}_{\mathbf{ext_strngr_2}} \coloneqq 1.25 \cdot 6.28 \mathbf{ft} \cdot \mathbf{k}$
Stringer LL moment	$\gamma LL_{ext_strngr_2} \coloneqq 1.75 \cdot 8.02 \mathbf{k} \cdot \mathbf{ft}$
Inventory Rating	$INV_{ext_strngr_2} := w_{ped_LL} \cdot \frac{C_{ext_strngr_2} - \gamma DL_{ext_strngr_2}}{\gamma LL_{ext_strngr_2}} = 298.5 \cdot psf$
I Operating Rating I	$OPR_{ext_strngr_2} := w_{ped_LL} \cdot \frac{C_{ext_strngr_2} - \gamma DL_{ext_strngr_2}}{\gamma LL_{ext_strngr_2} \cdot \left(\frac{1.35}{1.75}\right)} = 386.95 \cdot psf$
	$\gamma_{LL_{ext_strngr_2}} (1.75)$ Sidewalk Bracket (tapered I beam):
	To account for the bracket that has significant web section loss and is
	disjointed from the bottom angles (bottom flange), the bottom 2" of the tapered I beam are excluded from the capacity calculation.
Section properties at truss	$\mathbf{A}_{sw_bracket} := 16\mathbf{in} \cdot 0.25\mathbf{in} + 2 \cdot 2.37\mathbf{in}^2 = 8.74 \cdot \mathbf{in}^2 \mathbf{a}_{sw_bracket} := \frac{10.7232}{2}\mathbf{in} + 2.19\mathbf{in}$
end I	$\mathbf{Z}_{sw_bracket} := \frac{\mathbf{A}_{sw_bracket}}{2} \cdot \mathbf{a}_{sw_bracket} = 33 \cdot \mathbf{in}^3$
Flexural resistance at truss	$\phi \mathbf{M}_{sw_bracket} := \mathbf{F}_{y} \cdot \mathbf{Z}_{sw_bracket} = 82.5 \cdot \mathbf{ft} \cdot \mathbf{k}$
end I	AASHTO LRFR Load Rating:
Bracket Capacity	$\mathbf{C}_{\mathbf{sw_bracket}} \coloneqq 0.85 \cdot \mathbf{\phi} \mathbf{M}_{\mathbf{sw_bracket}} = 70.126 \cdot \mathbf{ft} \cdot \mathbf{k}$
I DL moment at truss end	$\gamma \mathbf{DL}_{\mathbf{sw_bracket}} \coloneqq 1.25 \cdot \frac{\left(2.4 \frac{\mathbf{k}}{\mathbf{ft}}\right)}{2} \cdot \left(5\mathbf{ft}\right)^2$
	2 (SIL)

3rd St. Bridge-FHWA #12250 City of Waverly	Load Rating 6 05-14-15								
LL moment at truss end	$\gamma LL_{sw_bracket} := 1.75 \cdot \frac{\left(1.54 \frac{k}{ft}\right)}{2} \cdot (5ft)^2$ $C_{sw_bracket} - \gamma DL_{sw_bracket} = 87.16 \text{ pof}$								
Inventory Rating	$INV_{sw_bracket} := w_{ped_LL} \cdot \frac{C_{sw_bracket} - \gamma DL_{sw_bracket}}{\gamma LL_{sw_bracket}} = 87.16 \cdot psf$								
Operating Rating	$OPR_{sw_bracket} := w_{ped_LL} \cdot \frac{C_{sw_bracket} - \gamma DL_{sw_bracket}}{\gamma LL_{sw_bracket} \cdot \left(\frac{1.35}{1.75}\right)} = 112.99 \cdot psf$ Floor Beams:								
DL from stringers	$\mathbf{P}_{\mathbf{DL_1_2_FB}} \coloneqq 1.3\mathbf{k}$								
LL from stringers	$\mathbf{P_{LL_1_2_FB}} := 3.74 \mathbf{k}$								
	Floor beam forces analyzed in STAAD per AASHTO Pedestrian LRFD Strength I (factored loads shown)								
	-6.545 kip -								
	-1.625 kip -								
	Floor beams are W18x55								
	$\mathbf{Z}_{\mathbf{x}_{w18x55}} := 112 \text{ in}^{3}$								
Nominal flexural resistance	$\phi \mathbf{M}_{n_FB_1} := \mathbf{F}_{\mathbf{y}} \cdot \mathbf{Z}_{\mathbf{x}_W18\mathbf{x}55} = 280 \cdot \mathbf{ft} \cdot \mathbf{k}$								
	AASHTO LRFR Load Rating:								
System Factor	$\boldsymbol{\varphi}_{\mathbf{s}_{\mathbf{F}}\mathbf{B}_{1}} \coloneqq 0.85$								
Floor Beam Capacity	$\mathbf{C}_{\mathbf{FB}_1} \coloneqq \boldsymbol{\varphi}_{\mathbf{s}_\mathbf{FB}_1} \cdot \boldsymbol{\varphi} \mathbf{M}_{\mathbf{n}_\mathbf{FB}_1}$								
Floor Beam DL moment	$\gamma DL_{FB_1} := 1.25 \cdot 27.9 \text{ft} \cdot \text{k}$								
Floor Beam LL moment	$\gamma LL_{FB_{-1}} \coloneqq 1.75 \cdot 80.3 \mathbf{k} \cdot \mathbf{ft}$								
Inventory Rating	$\mathbf{INV}_{\mathbf{FB}_1} \coloneqq \mathbf{w}_{\mathbf{ped}_\mathbf{LL}} \cdot \frac{\mathbf{C}_{\mathbf{FB}_1} - \gamma \mathbf{DL}_{\mathbf{FB}_1}}{\gamma \mathbf{LL}_{\mathbf{FB}_1}} = 130.09 \cdot \mathbf{psf}$								
Operating Rating	$\mathbf{OPR}_{\mathbf{FB}_{1}} \coloneqq \mathbf{w}_{\mathbf{ped}_{\mathbf{LL}}} \cdot \frac{\mathbf{C}_{\mathbf{FB}_{1}} - \gamma \mathbf{DL}_{\mathbf{FB}_{1}}}{\gamma \mathbf{LL}_{\mathbf{FB}_{1}} \cdot \left(\frac{1.35}{1.75}\right)} = 168.64 \cdot \mathbf{psf}$								
	Truss Bearings:								
	I The 4"φ pin at the SW bearing has 2.5" of remaining section.								
Pin & Bearing plates	$D_{SW} := 2.5 in$ $t_{SW} := 1.75 in$								
Nominal bearing resistance	$\mathbf{\Phi}\mathbf{P}_{\mathbf{n}_{\mathbf{S}\mathbf{W}}} := \mathbf{F}_{\mathbf{y}} \cdot 2 \cdot \mathbf{D}_{\mathbf{S}\mathbf{W}} \cdot \mathbf{t}_{\mathbf{S}\mathbf{W}} = 262.5 \cdot \mathbf{k}$								
Strength I truss reactions (from STAAD analysis)	$\mathbf{V}_{\mathbf{u}_S\mathbf{W}} \coloneqq 189.3\mathbf{k}$								




Stringer spacing $H=93$ Stringer spacingStringer = $2\mathbf{f} + 5\mathbf{in}$ Live load distribution factor per AASHTO 4.6.2.2.2b-1 Live load impact factor $\mathbf{DF}_{interior} := \frac{S_{stringer}}{8\mathbf{ft}} = 0.3021$ Live load impact factor Wheel loads Lane load $\mathbf{DF}_{interior} := \frac{S_{stringer}}{8\mathbf{ft}} = 0.3021$ Point loads on stringers $\mathbf{P}_1 := 0.5 \cdot 8\mathbf{k} = 4000 \mathbf{lb}$ $\mathbf{P}_2 := 0.5 \cdot 32\mathbf{k} = 16000 \mathbf{lb}$ $\mathbf{LI}_{anne} := DF_{interior} \cdot 640 \frac{\mathbf{lb}}{\mathbf{ft}} = 193.33 \frac{\mathbf{lb}}{\mathbf{ft}}$ Point loads on stringersInterior $\mathbf{LL}_{stringer} := (1 + \mathbf{IM}) \cdot DF_{interior} \cdot \mathbf{P}_2 = 6.43 \cdot \mathbf{gWorst}$ case when back ade is at stringer mid-span) Stringer forces analyzed in STAAD per AASHTO LRFR Strength 1Stringer LL moment Inventory Rating Factor $\mathbf{Mz}(\mathbf{kp}-\mathbf{in})$ Inventory Rating Factor $\mathbf{RV}_{stringer,2} := 1 \cdot \frac{1.57 \cdot 34.6 \mathbf{k} \cdot 11}{7\mathbf{LL}_{stringr,2}} = 0.7$ $7\mathbf{LL}_{stringr,2} := 0.91$ Operating Rating Factor $\mathbf{OPR}_{stringer,2} := 1 \cdot \frac{C_{stringr,1} - 7\mathbf{DL}_{stringr,1}}{7\mathbf{LL}_{stringr,2}} = 0.91$	3rd St. Bridge-FHWA #12250 City of Waverly	Load Rating 8 05-14-15							
Live load distribution factor per AASHTO 4.6.2.2.2b-1 Live load impact factor Wheel loads Lane load P1 := 0.5·8k = 4000 lb Lane load P1 := 0.5·8k = 4000 lb Lane is per bold		VEHICULAR USE 32 kips 32 kips 8 kips 14 to 30 ft 14 ft 14 ft 14 ft							
Eliver load impact factor Live load impact factor Wheel loads Lane load Hand Interior Point loads on stringers Point loads on stringers Point loads on stringers Stringer LL moment Inventory Rating Factor IN := 0.33 IN := 0.5·8k = 4000 lb P_2 := 0.5·32k = 16000 lb LL _{tane} := DF _{interior} ·640 $\frac{lb}{ft}$ = 193.33 $\frac{lb}{ft}$ Floor System Interior LL _{stringer} := (1 + IM) ·DF _{interior} ·P_2 = 6.43 ·fWorst case when back axle is at stringer mid-span) Stringer forces analyzed in STAAD per AASHTO LRFR Strength I Mz(kip-in) AASHTO LRFR Load Rating: $\gamma LL_{strongr_2} := 1.75 \cdot 34.6k \cdot ft$ Inventory Rating Factor INV _{strongr_2} := 1 · $\frac{C_{strongr_1} - \gamma DL_{strongr_1}}{\gamma LL_{strongr_2}} = 0.7$	Stringer spacing	$\mathbf{S}_{\mathrm{stringer}} \coloneqq 2\mathbf{ft} + 5\mathbf{in}$							
Wheel loads $P_1 := 0.5 \cdot 8k = 4000 \text{ lb}$ $P_2 := 0.5 \cdot 32k = 16000 \text{ lb}$ Lane load $LL_{tane} := DF_{interior} \cdot 640 \frac{lb}{ft} = 193.33 \frac{lb}{ft}$ Point loads on stringersInteriorPoint loads on stringersInteriorLL_stringer := (1 + IM) $\cdot DF_{interior} \cdot P_2 = 6.43 \cdot \text{kWorst case when back axle is at stringer mid-span)}$ Stringer forces analyzed in STAAD per AASHTO LRFR Strength IMz(kip-in) $400 - 4$		$\mathbf{DF_{interior}} \coloneqq \frac{\mathbf{S_{stringer}}}{\mathbf{8ft}} = 0.3021$							
Lane load $P_{1} := 0.5 \cdot 8k = 4000 lb \qquad P_{2} := 0.5 \cdot 32k = 16000 lb$ $LL_{lane} := DF_{interior} \cdot 640 \frac{lb}{ft} = 193.33 \frac{lb}{ft}$ Floor System Interior Point loads on stringers Point loads on stringers Stringer forces analyzed in STAAD per AASHTO LRFR Strength I $Mz(kip-in)$ $Mz(kip-in)$ $AASHTO LRFR Load Rating: \gamma LL_{stringr_2} := 1.75 \cdot 34.6k \cdot ft Inventory Rating FactorINV_{stringr_2} := 1 \cdot \frac{C_{stringr_1} - \gamma DL_{stringr_1}}{\gamma LL_{stringr_2}} = 0.7$		IM := 0.33							
Point loads on stringers $LL_{tane} := DF_{interior} \cdot 640 \frac{lb}{ft} = 193.33 \frac{lb}{ft}$ Point loads on stringersFloor SystemInterior $LL_{stringer} := (1 + IM) \cdot DF_{interior} \cdot P_2 = 6.43 \cdot \text{(Worst case when back axle is at stringer mid-span)}$ Stringer forces analyzed in STAAD per AASHTO LRFR Strength IMz(kip-in) $400 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -$									
Point loads on stringers Point loads on stringers Interior LL _{stringer} := $(1 + IM) \cdot DF_{interior} \cdot P_2 = 6.43 \cdot Worst case when back axle is at stringer mid-span)$ Stringer forces analyzed in STAAD per AASHTO LRFR Strength I Mz(kip-in) Mz(kip		$\mathbf{LL}_{\mathbf{lane}} \coloneqq \mathbf{DF}_{\mathbf{interior}} \cdot 640 \frac{\mathbf{lb}}{\mathbf{ft}} = 193.33 \frac{\mathbf{lb}}{\mathbf{ft}}$							
Point loads on stringers $LL_{stringer} := (1 + IM) \cdot DF_{interior} \cdot P_2 = 6.43 \cdot \text{@Worst case when back axle is at stringer mid-span)}$ Stringer forces analyzed in STAAD per AASHTO LRFR Strength I $Mz(kip-in)$ $Mz(kip-in)$ $Mz(kip-in)$ $Mz(kip-in)$ $AASHTO LRFR Load Rating:$ $\gamma LL_{strngr_2} := 1.75 \cdot 34.6k \cdot ft$ $INV_{strngr_2} := 1 \cdot \frac{C_{strngr_1} - \gamma DL_{strngr_1}}{\gamma LL_{strngr_2}} = 0.7$		Floor System							
Stringer LL moment Inventory Rating Factor $INV_{strngr_2} := 1 \cdot \frac{C_{strngr_1} - \gamma DL_{strngr_1}}{\gamma LL_{strngr_2}} = 0.7$	Point loads on stringers	$\label{eq:LL_stringer} \begin{split} LL_{stringer} &:= (1 + IM) \cdot DF_{interior} \cdot P_2 = 6.43 \cdot \textbf{k} \\ & \text{Stringer mid-span} \\ \text{Stringer forces analyzed in STAAD per AASHTO LRFR Strength I} \end{split}$							
Stringer LL moment $\gamma LL_{strngr_2} := 1.75 \cdot 34.6 k \cdot ft$ Inventory Rating Factor $INV_{strngr_2} := 1 \cdot \frac{C_{strngr_1} - \gamma DL_{strngr_1}}{\gamma LL_{strngr_2}} = 0.7$		400 - 8.57 - 400 10 - 5 - 10 - 170 - 2 400 - 800 - 800							
	Stringer LL moment	$\gamma LL_{strngr_2} := 1.75 \cdot 34.6 \mathbf{k} \cdot \mathbf{ft}$							
Operating Rating Factor $OPR_{strngr_2} := 1 \cdot \frac{C_{strngr_1} - \gamma DL_{strngr_1}}{\gamma LL_{strngr_2} \cdot \left(\frac{1.35}{1.75}\right)} = 0.91$	Inventory Rating Factor	$INV_{strngr_2} := 1 \cdot \frac{C_{strngr_1} - \gamma DL_{strngr_1}}{\gamma LL_{strngr_2}} = 0.7$							
		$\mathbf{OPR}_{\mathbf{strngr_2}} \coloneqq 1 \cdot \frac{\mathbf{C}_{\mathbf{strngr_1}} - \gamma \mathbf{DL}_{\mathbf{strngr_1}}}{\gamma \mathbf{LL}_{\mathbf{strngr_2}} \cdot \left(\frac{1.35}{1.75}\right)} = 0.91$							

Brd St. Bridge-FHWA #12250 City of Waverly	Load	Ratir	ng							11 05-14-1			
	Cas	se 3:											
	7 SPACES @ $17' - 1\frac{3}{4}" = 120' - 0"$												
-	$\frac{3'-1\frac{3''}{4}}{3'-1\frac{3}{4}} + \frac{14'-0''}{3'-1\frac{3}{4}} + \frac{14'-0'''}{3'-1\frac{3}{4}} + \frac{14'-0'''}{3'-1\frac{3}{4}} + \frac{14'-0'''}{3'-1\frac{3}{4}} + 14'-0$												
₽ R4	R4			P1	F	2 72 72	P2 R3		R4				
Truss forces analyzed in STAAD per AASHTO LRFR Strength I													
			-				Comp.	Tension	LOAD				
			A _g (in^2)	L (in)	r (in)	KL/r	ø _c P _n k	ø _y F _y A _g k	?i₽u k	S.R.			
2C8x16.25 (w/ 5/16x14 PL)	L0-U1	TC	14	(iii) <u>162.66</u>	3.16	51.47		399.00	к 223.7	0.66			
· · · · · · · · · · · · · · · · · · ·	U1-U2	TC	11.1	205.75	3.16	65.11	249.24	316.92	254.2	1.02			
2C8x11.5 (w/ 5/16x14 PL) 2C8x11.5 (w/ 5/16x14 PL)	U2-U3 U3-U4	TC TC	11.1 11.1	205.75 205.75	3.16 3.16	65.11 65.11	249.24 249.24	316.92 316.92	304.3 294.5	1.22 1.18			
2L5x3.5x5/16	L0-L1	BC	5.12	205.75	1.02	201.72	28.40	145.92	-141.5	0.97			
2L5x3.5x5/16	L1-L2	BC	5.12	205.75	1.02	201.72		145.92	-141.5	0.97			
2L5x3.5x7/16 2L5x3.5x1/2	L2-L3 L2-L3	BC BC	8.01 8.01	205.75 205.75	1.00 1.00	205.75 205.75			-254.2 -299.8	1.11 1.31			
2C8x11.25 (w/ 2"x1/4" lacing)		vert	6.61	252.00	3.16	79.75		188.39	-35.3	0.19			
2C8x11.25 (w/ 2"x1/4" lacing)		vert	6.61	252.00	3.16			188.39	98.4	0.73			
2C8x11.25 (w/ 2"x1/4" lacing) 2L5x3x5/16	L3-U3 U1-L2	vert diag.	6.61 4.81	252.00 325.31	3.16 0.85	79.75 382.72		188.39 137.09	24.4 -183.8	0.18			
2L3.5x2.5x1/4	U2-L3	diag.		325.31	0.65			82.65	-183.8 -127	1.54			
2L2.5x2.5x1/2	U3-L4	diag.		325.31	0.74			128.25	-38.7	0.30			
	I I Member U2-L3 controls I AASHTO LRFR Load Rating:												
U2-L3 Capacity	$\mathbf{C}_{\text{truss}_3} := \min(0.85, \varphi_{c_\text{truss}_1} \cdot \varphi_{s_\text{truss}_1}) \cdot 82.65 \mathbf{k}$												
U2-L3 DL	γDL	truss_3	;:= 1.2	25·12.7 k									
U2-L3 LL	γLL_{1}	truss_3	:= 1.7	75∙63.5 k									
Inventory Rating Factor				C _{truss_3} - γLL									
Operating Rating Factor	OPR	4	• := 1·	$\frac{C_{truss_3} - \gamma LL_{truss_3}}{\gamma LL_{truss_3}}$	γDL	truss_3	- 0.55						

I Truss forces analyzed in STAAD per AASHTO LRFR Strength I

	-						Allowable	Allowable	ACTUAL	
			Ag	L	r		Comp. _{øc} P _n	Tension ø _y F _y A _g	LOAD ?¡Pu	
	1		(in^2)	(in)	(in)	KL/r	¢c'n k	k k	ri ^r u k	S.R.
2C9x20 (w/ 3/8x15 PL)	LD-U1	TC	16.4	162.66	3.44	47.28	402.13	468.26	320.4	0.80
2C9x13.25 (w/ 3/8x15 PL)	U 1-U2	TC	12.6	205.75	3.56	57.79	293.09	358.25	370.9	1.27
2C9x13.25 (w/ 3/8x15 PL)	U 2-U3	TC	12.6	205.75	3.56	57.79	293.09	358.25	444	1.51
2C9x13.25 (w/ 3/8x15 PL)	U 3-U4	TC	12.6	205.75	3.56	57.79	293.09	358.25	433.3	1.48
2L5x3.5x9/16	Lρ-L1	BC	11.6	205.75	0.97	212.11	58.19	330.60	-211.5	0.64
2L5x3.5x9/16	L1-L2	BC	11.6	205.75	0.97	212.11	58.19	330.60	-211.5	0.64
2L5x3.5x5/16 + 2L5x3.5x3/8	L2-L3	BC	11.2	205.75	1.02	201.72	62.23	319.77	-370.9	1.16
4L5x3.5x7/16	L3-L4	BC	10.2	205.75	1.02	201.72	56.80	291.84	-441.1	1.51
2C8x11.25 (w/ 2"x1/4" lacing)	L1-U1	vert	6.61	252.00	3.16	79.75	134.98	188.39	-63.8	0.34
2C8x11.25 (w/ 2"x1/4" lacing)	L2-U2	vert	6.61	252.00	3.16	79.75	134.98	188.39	127	0.94
2C8x11.25 (w/ 2"x1/4" lacing)	L3-U3	vert	6.61	252.00	3.16	79.75	134.98	188.39	22.9	0.17
2L6x3.5x7/16	U1-L2	diag.	9.04	325.31	0.97	335.37	18.14	257.64	-257.6	1.00
2L5x3x5/16	Ú2-L3	diag.	4.81	325.31	0.85	382.72	7.41	137.09	-163.9	1.20
2L2.5x2.5x1/4	U3-L4	diag.	2.37	162.66	0.76	214.02	11.68	67.55	-40.7	0.60

Member L3-L4 controls

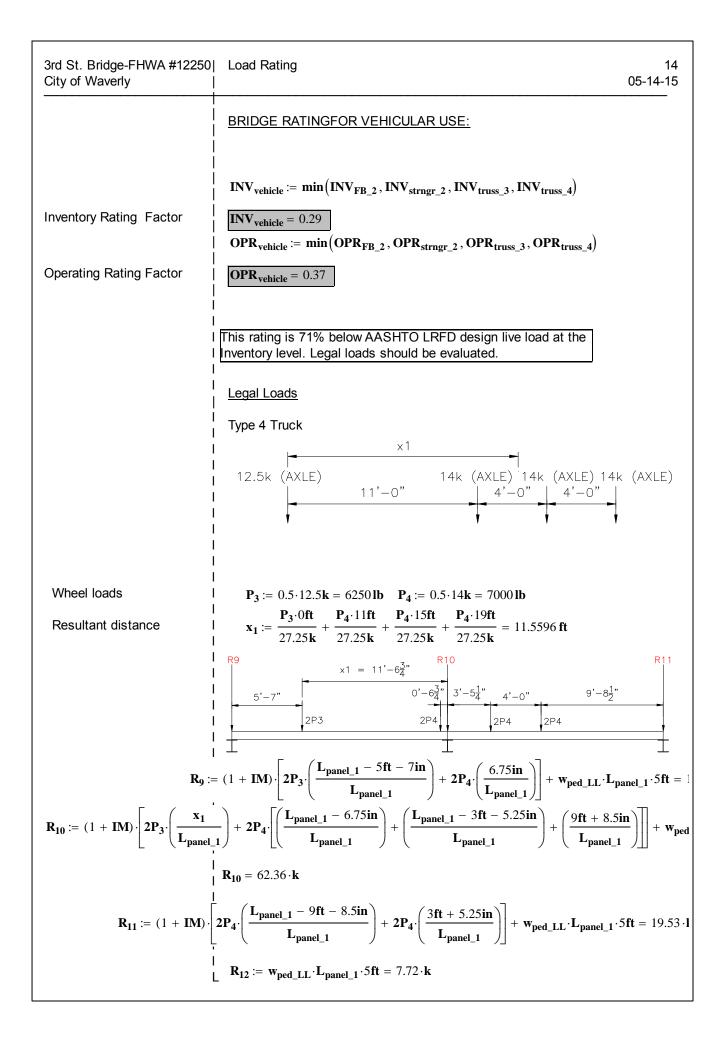
AASHTO LRFR Design Load Rating:

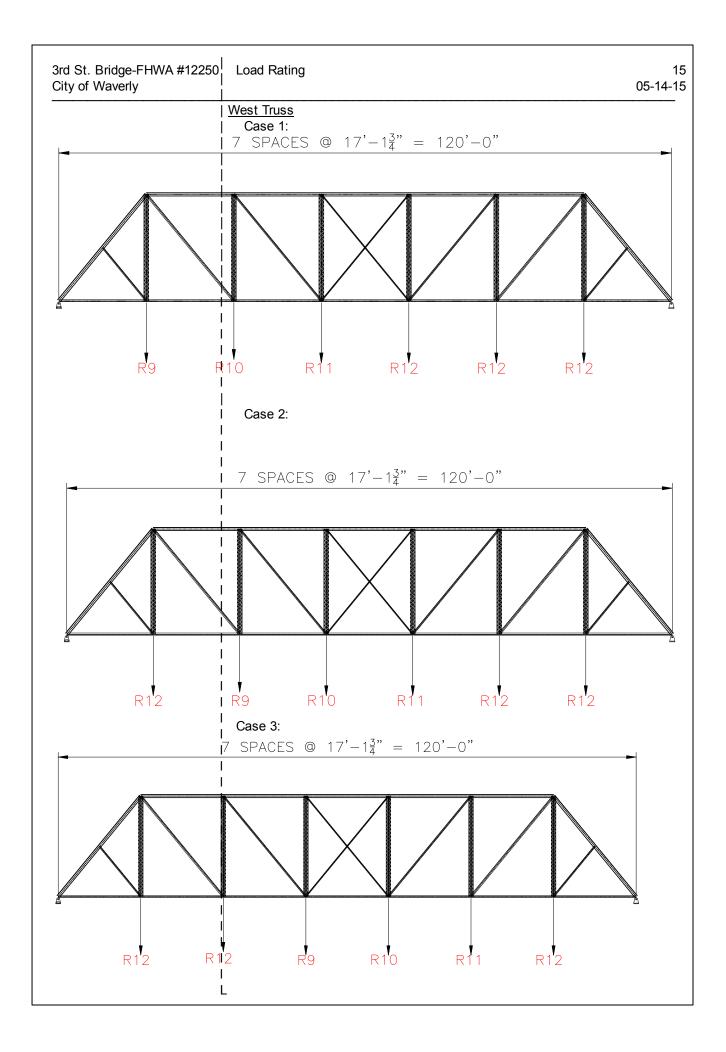
L3-L4 LL

$$- \gamma LL_{truss_4} := 1.75 \cdot 174.8 k$$

1

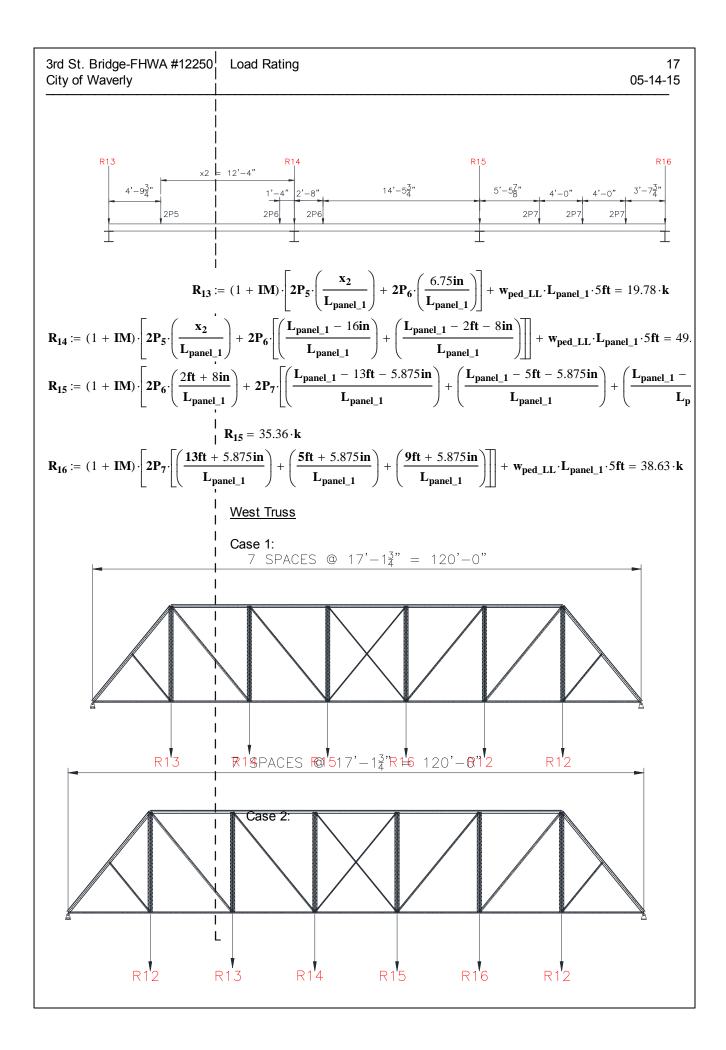
T 1

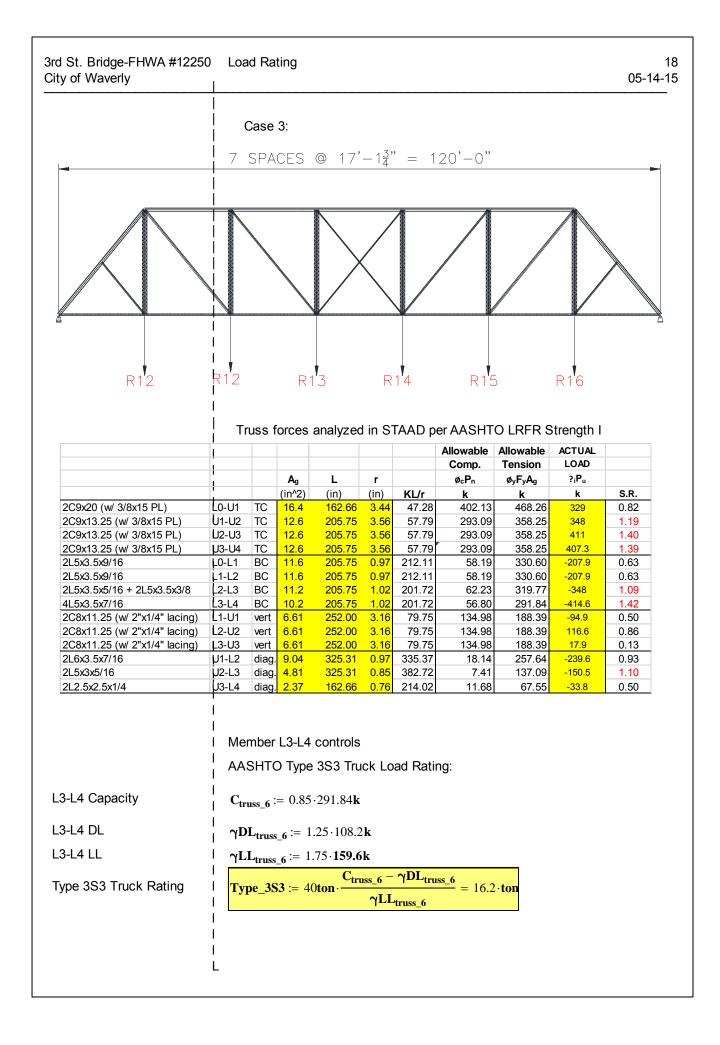

T

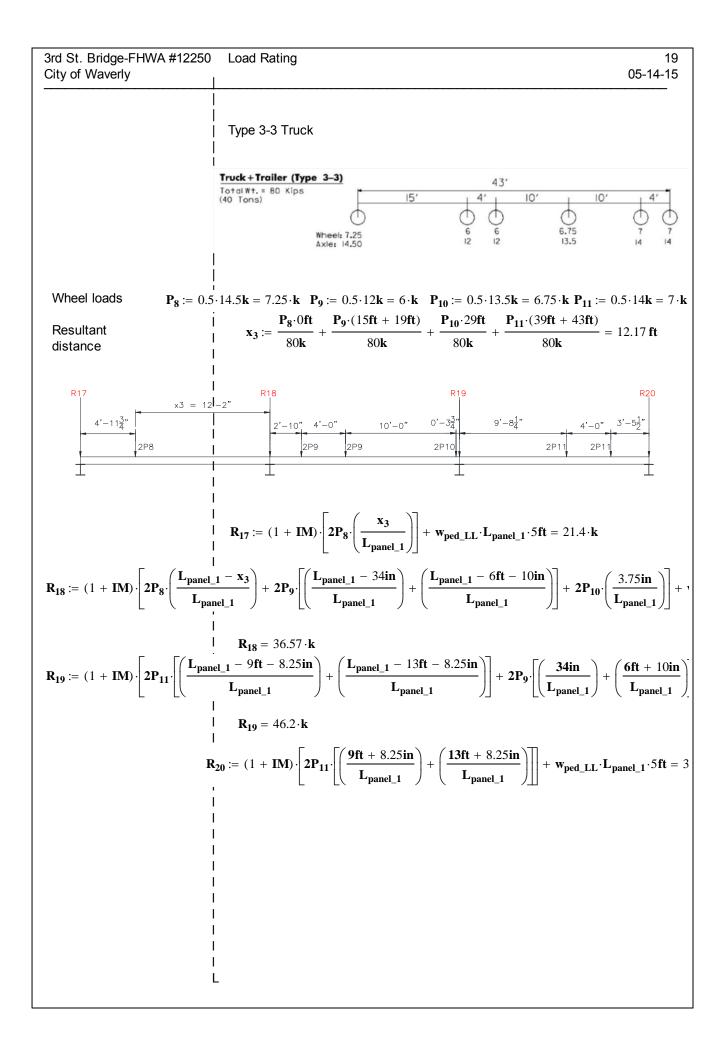

L

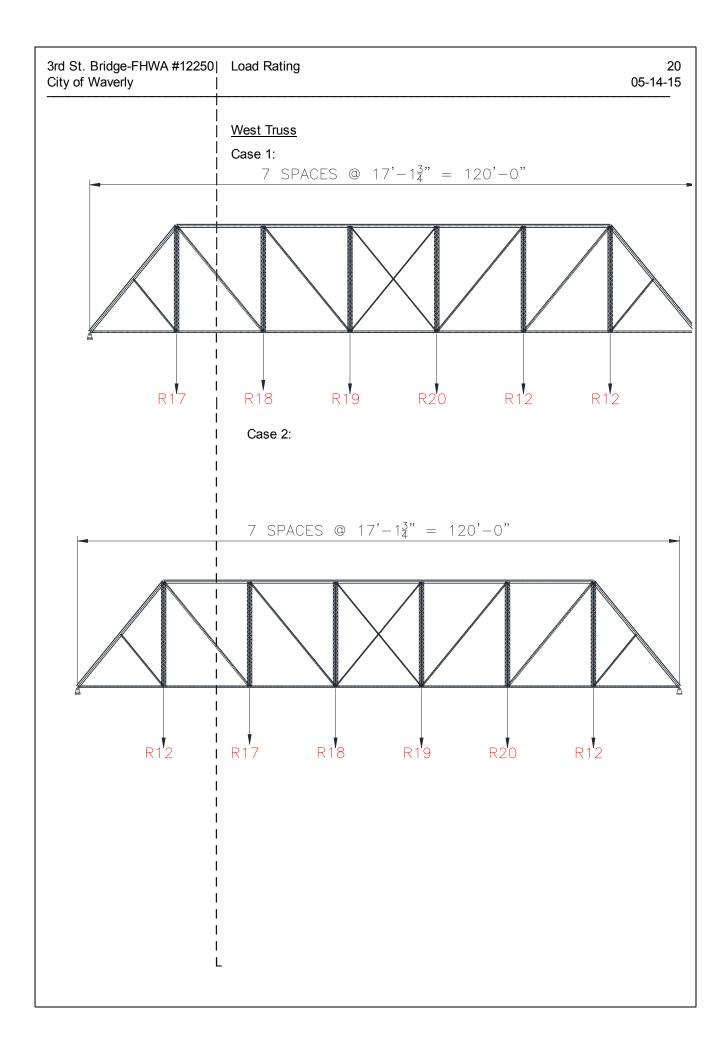
Inventory Rating Factor I INV_{truss_4} :=
$$1 \cdot \frac{\mathbf{C}_{truss_2} - \gamma \mathbf{DL}_{truss_2}}{\gamma \mathbf{LL}_{truss_4}} = 0.29$$

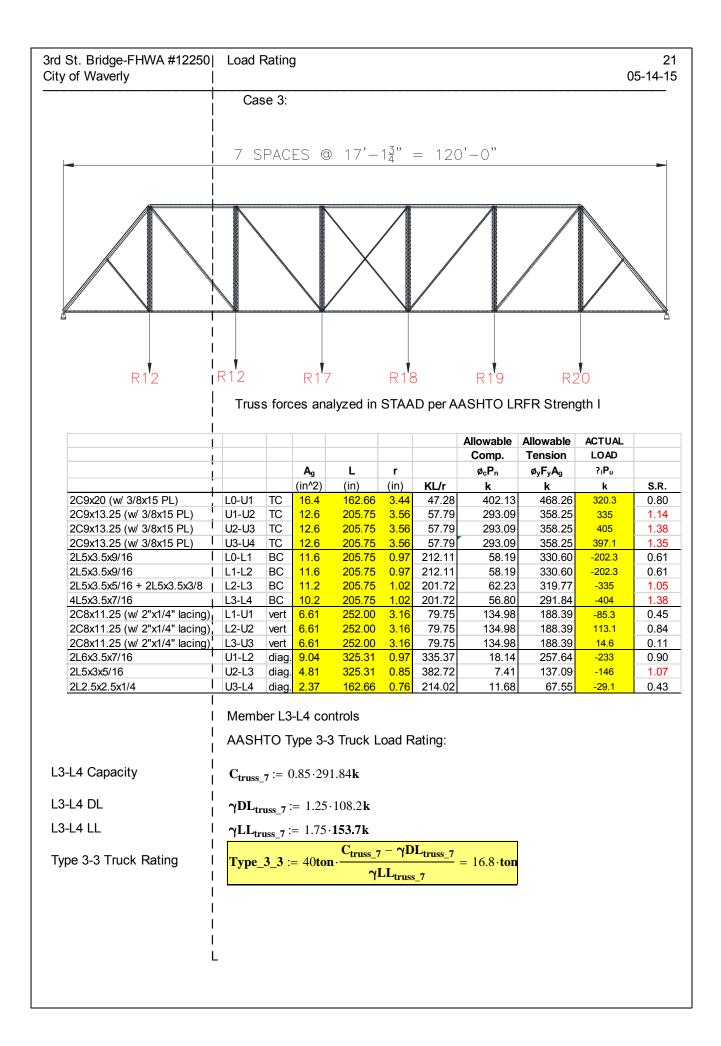
Operating Rating Factor I OPR_{truss_4} := $1 \cdot \frac{\mathbf{C}_{truss_2} - \gamma \mathbf{DL}_{truss_2}}{(1.25)} = 0.37$


Operating Rating Factor


$$1 \cdot \frac{\gamma LL_{truss_4}}{\gamma LL_{truss_4}} \cdot \left(\frac{1.35}{1.75}\right)$$






$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(in C 10 C 10 C 12 C 12 C 12 C 12 C 12 C 12 C 13 C 11 C 12 C 14 C	2.6 2.6 2.6 1.6 1.2 0.2 61 61 61 61 04 81 37 J3 con e 4 Tr 5.293. 1.25.1 1.75.1	ruck Lc .09 k 107.3 k 137.7 k		DL _{truss}	$\frac{comp.}{comp.}$ $\frac{\phi_c P_n}{k}$ $\frac{402.13}{293.09}$ $\frac{293.09}{293.09}$ $\frac{293.09}{58.19}$ $\frac{58.19}{62.23}$ $\frac{56.80}{134.98}$ 134.98 144.98 144.98 144.98 144.98 144.98 144.98 144.98 144.98 144.98 144.98 144.98 144.98 144.98 144.98	358.25 358.25 330.60 330.60 319.77 291.84 188.39 188.39 188.39 257.64 137.09 67.55	ACTUAL LOAD ?iPu 284.6 309.7 375.1 356.3 -180 -180 -309.7 -61.6 99.6 16.2 -206.6 -128.6 -128.6 -29.7	S.R. 0.71 1.06 1.28 1.22 0.54 0.54 0.54 0.33 0.74 0.12 0.80 0.94 0.44
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(in C 10 C 10 C 12 C 12 C 12 C 12 C 12 C 12 C 13 C 11 C 12 C 14 C	 №2) 5.4 2.6 2.6 2.6 1.6 1.2 0.2 61 61 61 61 61 61 61 81 37 J3 con a 4 Tr 5 · 293. 1.25 · 1 1.75 · 1 	(in) 162.66 205.75	(in) 3.44 3.56 3.56 0.97 1.02 1.02 3.16 3.16 3.16 0.97 0.85 0.76 0.76	47.28 57.79 57.79 212.11 212.11 201.72 201.72 79.75 79.75 335.37 382.72 214.02	øcPn k 402.13 293.09 293.09 293.09 58.19 62.23 56.80 134.98 134.98 134.98 134.98 134.98 134.98	øyFyAg k 468.26 358.25 358.25 330.60 330.60 319.77 291.84 188.39 188.39 188.39 257.64 137.09 67.55	?iPu k 284.6 309.7 375.1 356.3 -180 -309.7 -362.7 -61.6 99.6 16.2 -206.6 -128.6	0.71 1.06 1.28 1.22 0.54 0.54 0.54 0.33 0.74 0.12 0.80 0.94
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(in C 10 C 10 C 12 C 12 C 12 C 12 C 12 C 12 C 13 C 11 C 12 C 14 C	 №2) 5.4 2.6 2.6 2.6 1.6 1.2 0.2 61 61 61 61 61 61 61 81 37 J3 con a 4 Tr 5 · 293. 1.25 · 1 1.75 · 1 	(in) 162.66 205.75	(in) 3.44 3.56 3.56 0.97 1.02 1.02 3.16 3.16 3.16 0.97 0.85 0.76 0.76	47.28 57.79 57.79 212.11 212.11 201.72 201.72 79.75 79.75 335.37 382.72 214.02	k 402.13 293.09 293.09 293.09 58.19 62.23 56.80 134.98 134.98 134.98 134.98 134.98 134.98	k 468.26 358.25 358.25 330.60 330.60 319.77 291.84 188.39 188.39 188.39 257.64 137.09 67.55	k 284.6 309.7 375.1 356.3 -180 -180 -309.7 -362.7 -61.6 99.6 16.2 -206.6 -128.6	0.71 1.06 1.28 1.22 0.54 0.54 0.54 0.33 0.74 0.12 0.80 0.94
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.6 2.6 2.6 1.6 1.2 0.2 61 61 61 61 04 81 37 J3 con e 4 Tr 5.293. 1.25.1 1.75.1	205.75 205.75 205.75 205.75 205.75 205.75 205.75 205.75 252.00 252.00 252.00 252.00 252.00 325.31 162.66 ntrols ruck Lc .09k 107.3k 37.7k	3.56 3.56 0.97 1.02 1.02 3.16 3.16 3.16 0.97 0.85 0.76	47.28 57.79 57.79 212.11 212.11 201.72 201.72 79.75 79.75 335.37 382.72 214.02	402.13 293.09 293.09 293.09 58.19 62.23 56.80 134.98 134.98 134.98 134.98 134.98 134.98 134.98	358.25 358.25 330.60 330.60 319.77 291.84 188.39 188.39 188.39 257.64 137.09 67.55	284.6 309.7 375.1 356.3 -180 -309.7 -362.7 -61.6 99.6 16.2 -206.6 -128.6	0.71 1.06 1.28 1.22 0.54 0.54 0.54 0.33 0.74 0.12 0.80 0.94
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2.6 2.6 1.6 1.6 1.2 0.2 61 61 61 61 61 04 81 37 J3 con e 4 Tr 5.293. 1.25.1 1.75.1	205.75 205.75 205.75 205.75 205.75 205.75 205.75 252.00 252.00 252.00 325.31 325.31 162.66 ntrols ruck Lc .09k 107.3k 37.7k	3.56 3.56 0.97 1.02 1.02 3.16 3.16 3.16 0.97 0.85 0.76	57.79 57.79 212.11 212.11 201.72 201.72 79.75 79.75 335.37 382.72 214.02	293.09 293.09 58.19 62.23 56.80 134.98 134.98 134.98 134.98 18.14 7.41 11.68	358.25 358.25 330.60 319.77 291.84 188.39 188.39 188.39 257.64 137.09 67.55	375.1 356.3 -180 -309.7 -362.7 -61.6 99.6 16.2 -206.6 -128.6	1.28 1.22 0.54 0.54 0.97 1.24 0.33 0.74 0.12 0.80 0.94
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccc} & 12\\ \hline 3C & 11\\ \hline 10\\ \hline ert & 6.\\ \hline ert & 6.\\$	2.6 1.6 1.2 0.2 61 61 61 61 04 81 37 J3 con 1.25 · 1 1.25 · 1 1.75 · 1	205.75 205.75 205.75 205.75 205.75 252.00 252.00 252.00 325.31 325.31 162.66 ntrols ruck Lc .09k 107.3k 37.7k	3.56 0.97 1.02 1.02 3.16 3.16 3.16 0.97 0.85 0.76	57.79 212.11 212.11 201.72 79.75 79.75 335.37 382.72 214.02	293.09 58.19 58.19 62.23 56.80 134.98 134.98 134.98 134.98 18.14 7.41 11.68	358.25 330.60 330.60 319.77 291.84 188.39 188.39 188.39 257.64 137.09 67.55	356.3 -180 -309.7 -362.7 -61.6 99.6 16.2 -206.6 -128.6	1.22 0.54 0.97 1.24 0.33 0.74 0.12 0.80 0.94
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3C 11 3C 11 3C 11 3C 10 act 6. ert 6. ert 6. iag. 9. diag. 2. diag. 2. r U2-U O Typ := 0.8 $s_5 = 5 :=$ s_5 :=	1.6 1.6 1.2 0.2 61 61 61 04 81 37 J3 con e 4 Tr 5.293. 1.25.1 1.75.1	205.75 205.75 205.75 205.75 252.00 252.00 325.31 325.31 162.66 ntrols ruck Lc .09k 107.3k 137.7k	0.97 0.97 1.02 3.16 3.16 0.97 0.85 0.76	212.11 212.11 201.72 201.72 79.75 79.75 335.37 382.72 214.02	58.19 58.19 62.23 56.80 134.98 134.98 134.98 18.14 7.41 11.68	330.60 330.60 319.77 291.84 188.39 188.39 188.39 257.64 137.09 67.55	-180 -180 -309.7 -362.7 -61.6 99.6 16.2 -206.6 -128.6	0.54 0.97 1.24 0.33 0.74 0.12 0.80 0.94
2L5x3.5x9/16 L1-L2 B 2L5x3.5x5/16 + 2L5x3.5x3/8 L2-L3 B 4L5x3.5x7/16 L3-L4 B 2C8x11.25 (w/ 2"x1/4" lacing) L1-U1 we 2C8x11.25 (w/ 2"x1/4" lacing) L2-U2 we 2C8x11.25 (w/ 2"x1/4" lacing) L3-U3 we 2C8x11.25 (w/ 2"x1/4" lacing) L3-U3 we 2C8x11.25 (w/ 2"x1/4" lacing) L3-U3 we 2L6x3.5x7/16 U1-L2 di 2L5x3x5/16 U2-L3 di 2L2.5x2.5x1/4 U3-L4 di 2L03 Capacity Ctruss_5 Ctruss_5 2-U3 DL γDL γLtruss 2-U3 LL YLtruss YLtruss ype 4 Truck Rating Type_4 I I I I I I I I I I I I I I I I I I I I I I I I I I I I	3C 11 3C 10 3C 10 act 6. ert 6. ert 6. iag. 9. diag. 2. iag. 2. r U2-U O Typ := 0.8. s_{s-5} := s_ s_5 := :=	1.6 1.2 0.2 61 61 61 04 81 37 J3 con e 4 Tr 5.293. 1.25.1 1.75.1	205.75 205.75 205.75 252.00 252.00 325.31 325.31 162.66 ntrols ruck Lc .09k 107.3k 37.7k	0.97 1.02 1.02 3.16 3.16 0.97 0.85 0.76	212.11 201.72 201.72 79.75 79.75 335.37 382.72 214.02	58.19 62.23 56.80 134.98 134.98 134.98 18.14 7.41 11.68	330.60 319.77 291.84 188.39 188.39 257.64 137.09 67.55	-180 -309.7 -362.7 -61.6 99.6 16.2 -206.6 -128.6	0.54 0.97 1.24 0.33 0.74 0.12 0.80 0.94
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3C 11 3C 10 ert 6. ert 6. iag. 9. diag. 2. iag. 2. r U2-U O Typ := 0.8. $s_{s=5}$:= s_5 :=	1.2 0.2 61 61 04 81 37 J3 con 1.25 · 1 1.25 · 1 1.75 · 1	205.75 205.75 252.00 252.00 252.00 325.31 325.31 162.66 ntrols ruck Lc .09k 107.3k 37.7k	1.02 1.02 3.16 3.16 0.97 0.85 0.76	201.72 201.72 79.75 79.75 335.37 382.72 214.02	62.23 56.80 134.98 134.98 18.14 7.41 11.68	319.77 291.84 188.39 188.39 257.64 137.09 67.55	-309.7 -362.7 -61.6 99.6 16.2 -206.6 -128.6	0.97 1.24 0.33 0.74 0.12 0.80 0.94
4L5x3.5x7/16 L3-L4 B 2C8x11.25 (w/ 2"x1/4" lacing) L1-U1 we 2C8x11.25 (w/ 2"x1/4" lacing) L2-U2 we 2C8x11.25 (w/ 2"x1/4" lacing) L3-U3 we 2C8x11.25 (w/ 2"x1/4" lacing) L3-U3 we 2C8x11.25 (w/ 2"x1/4" lacing) L3-U3 we 2L6x3.5x7/16 U1-L2 di 2L5x3x5/16 U2-L3 di 2L2.5x2.5x1/4 U3-L4 di 1 Member AASHTO 2-U3 Capacity Ctruss_5 2 2-U3 DL YDLtruss YLtruss 2-U3 LL YLtruss YLtruss ype 4 Truck Rating Type_4 I 1 I I 1 I I I 1 I I I 1 I I I 2-U3 LL I YLtruss I I I I I I I I I I I I I I I	3C 10 ert 6. ert 6. iag. 9. diag. 2. iag. 2. r U2-U O Typ := 0.8 s_{s-5} := s_5 :=	2.2 61 61 61 04 81 37 J3 con № 4 Tr 5.293. 1.25.1 1.75.1	205.75 252.00 252.00 252.00 325.31 325.31 162.66 ntrols ruck Lc .09k 107.3k 137.7k Ctruss	1.02 3.16 3.16 0.97 0.85 0.76 0.76	201.72 79.75 79.75 335.37 382.72 214.02	56.80 134.98 134.98 18.14 7.41 11.68	291.84 188.39 188.39 257.64 137.09 67.55	-362.7 -61.6 99.6 16.2 -206.6 -128.6	1.24 0.33 0.74 0.12 0.80 0.94
2C8x11.25 (w/ 2"x1/4" lacing) L1-U1 ve 2C8x11.25 (w/ 2"x1/4" lacing) L2-U2 ve 2C8x11.25 (w/ 2"x1/4" lacing) L3-U3 ve 2C8x11.25 (w/ 2"x1/4" lacing) L3-U3 ve 2L6x3.5x7/16 U1-L2 di 2L5x3x5/16 U2-L3 di 2L2.5x2.5x1/4 U3-L4 di 1 Member AASHTO 1 AASHTO 1 2-U3 Capacity Ctruss_5 : 2-U3 DL γDLtruss 2-U3 LL γLtruss ype 4 Truck Rating Type_4 : 1 I 1 I 1 I 1 I 1 I 1 I 1 I 2-U3 LL I I I I I I I I I I I I I I I I I I I I	ert 6. ert 6. iag. 9. diag. 2. diag. 2. r U2-U O Typ := 0.8. ss_5 := s_5 :=	61 61 61 04 81 37 J3 con e 4 Tr 5.293. 1.25.1 1.75.1	252.00 252.00 252.00 325.31 325.31 162.66 ntrols ruck Lc .09k 107.3k 37.7k Ctruss	3.16 3.16 0.97 0.85 0.76 0.76	79.75 79.75 79.75 335.37 382.72 214.02	134.98 134.98 134.98 18.14 7.41 11.68	188.39 188.39 257.64 137.09 67.55	-61.6 99.6 16.2 -206.6 -128.6	0.33 0.74 0.12 0.80 0.94
2C8x11.25 (w/ 2"x1/4" lacing) L2-U2 ve 2C8x11.25 (w/ 2"x1/4" lacing) L3-U3 ve 2L6x3.5x7/16 U1-L2 di 2L5x3x5/16 U2-L3 di 1 Member AASHTO 1 AASHTO AASHTO 2-U3 Capacity Ctruss_5 vectors_5 2-U3 DL YDL YDL 2-U3 LL YLtruss vectors_5 ype 4 Truck Rating Type_4 1 I 1 I 1 I 1 I 1 I 1 I 1 I 2-U3 LL I 1 I 1 I 1 I 1 I 1 I 1 I <td>ert 6. liag. 9. liag. 4. liag. 2. r U2-U O Typ := 0.8. ss_5 := s_5 :=</td> <td>61 61 04 81 37 J3 con e 4 Tr 5.293. 1.25.1 1.75.1</td> <td>252.00 252.00 325.31 325.31 162.66 ntrols ruck Lc .09k 107.3k 37.7k Ctruss</td> <td>3.16 3.16 0.97 0.85 0.76 0.76</td> <td>79.75 79.75 335.37 382.72 214.02</td> <td>134.98 134.98 18.14 7.41 11.68</td> <td>188.39 188.39 257.64 137.09 67.55</td> <td>99.6 16.2 -206.6 -128.6</td> <td>0.74 0.12 0.80 0.94</td>	ert 6. liag. 9. liag. 4. liag. 2. r U2-U O Typ := 0.8. ss_5 := s_5 :=	61 61 04 81 37 J3 con e 4 Tr 5.293. 1.25.1 1.75.1	252.00 252.00 325.31 325.31 162.66 ntrols ruck Lc .09k 107.3k 37.7k Ctruss	3.16 3.16 0.97 0.85 0.76 0.76	79.75 79.75 335.37 382.72 214.02	134.98 134.98 18.14 7.41 11.68	188.39 188.39 257.64 137.09 67.55	99.6 16.2 -206.6 -128.6	0.74 0.12 0.80 0.94
2C8x11.25 (w/ 2"x1/4" lacing) L3-U3 we 2L6x3.5x7/16 U1-L2 di 2L5x3x5/16 U2-L3 di 2L5x3x5/16 U3-L4 di 2L5x3x5/16 U3-L4 di 2L2.5x2.5x1/4 U3-L4 di 1 Member AASHTO 1 AASHTO AASHTO 2-U3 Capacity Ctruss_5 : 2-U3 DL γDLtruss 2-U3 LL γLtuss ype 4 Truck Rating Type_4 : 1 I 1 I 1 I 1 I 1 I 2-U3 LL I 1 Type_4 : 1 I 1 I 1 I 1 I 1 I 2-U3 LL I 1 I 1 I 1 I 1 I 1 I 1 I 1 I<	ert 6. liag. 9. liag. 4. liag. 2. r U2-U O Typ := 0.8 :s=5 := s_5 :=	61 04 81 37 J3 con e 4 Tr 5 · 293. 1.25 · 1 1.75 · 1	252.00 325.31 325.31 162.66 ntrols ruck Lc .09k 107.3k 137.7k Ctruss	3.16 0.97 0.85 0.76 0.76	79.75 335.37 382.72 214.02	134.98 18.14 7.41 11.68	188.39 257.64 137.09 67.55	16.2 -206.6 -128.6	0.12 0.80 0.94
2L6x3.5x7/16 U1-L2 di 2L5x3x5/16 U2-L3 di 2L5x3x5/16 U3-L4 di 2L2.5x2.5x1/4 U3-L4 di 1 Member AASHTC 2-U3 Capacity C _{truss_5} : 2-U3 DL YDL _{truss} 2-U3 LL YLL _{truss} 1 Ype_4 : 1 I 1 I 1 I 1 I 1 I 2-U3 LL YLtruss 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I <	iiag. 9. iiag. 4. iiag. 2. r U2-U O Typ := 0.8. s_5 := s_5 :=	04 81 37 J3 con e 4 Tr 5 · 293. 1.25 · 1 1.75 · 1	325.31 325.31 162.66 ntrols ruck Lc .09k 107.3k 137.7k <u>Ctruss</u>	0.97 0.85 0.76 0.76	335.37 382.72 214.02	18.14 7.41 11.68	257.64 137.09 67.55	-206.6 -128.6	0.80 0.94
2L5x3x5/16 U2-L3 di 2L2.5x2.5x1/4 U3-L4 di 1 Member AASHTO 2-U3 Capacity C _{truss_5} : 2-U3 DL γDL_{truss} 2-U3 LL γLL_{truss} ype 4 Truck Rating I I I I I I I I Type_4: I I	iiag. 4. iiag. 2. r U2-U O Typ := 0.8. s_5 := s_5 :=	81 37 J3 con e 4 Tr 5 ⋅ 293. 1.25 ⋅ 1 1.75 ⋅ 1	325.31 162.66 ntrols ruck Lo .09k 107.3k 137.7k <u>Ctruss</u>	0.85 0.76 oad Ra	382.72 214.02 ating:	7.41	137.09 67.55	-128.6	0.94
2L2.5x2.5x1/4 U3-L4 di Image: Compact of the system Member Image: Compact of the system AASHTC Image: Compact of the system AASHTC Image: Compact of the system Image: Compact of the system Image: Compact of the system Image: Compact of the system Image: Compact of the system Image: Compact of the system Image: Compact of the system Image: Compact of the system Image: Compact of the system Image: Compact of the system Image: Compact of the system Image: Compact of the system Image: Compact of the system Image: Compact of the system Image: Compact of the system Image: Compact of the system Image: Compact of the system Image: Compact of the system Image: Compact of the system Image: Compact of the system Image: Compact of the system Image: Compact of the system Image: Compact of the system Image: Compact of the system Image: Compact of the system Image: Compact of the system Image: Compact of the system Image: Compact of the system Image: Compact of the system Image: Compact of the system Image: Compact of the system Image: Compact of the sy	r U2-U O Typ := 0.8 s_5 := s_5 :=	37 J3 con e 4 Tr 5 · 293. 1.25 · 1 1.75 · 1	162.66 htrols ruck Lc .09k 107.3k 137.7k <u>Ctruss</u>	<u>0.76</u> oad Ri	214.02 ating:	11.68	67.55		
Member AASHTC AASHTC AASHTC YDL YDL YDL YLtruss YPe 4 Truck Rating Type 3S3	r U2-U O Typ := 0.8 ss_5 := s_5 :=	J3 con e 4 Tr 5·293. 1.25·1 1.75·1	ntrols ruck Lc .09k 107.3k 137.7k .C <u>truss</u>	ad Ri	ating: DL _{truss}			-29.7	0.44
2-U3 Capacity 2-U3 DL 2-U3 DL 2-U3 LL ype 4 Truck Rating Type 3S3	O Typ := 0.8 ss_5 := s_5 :=	e 4 Tr 5·293. 1.25·1 1.75·1	ruck Lc .09 k 107.3 k 137.7 k	_ <u>5 </u>	DL _{truss}	$\frac{5}{2} = 13 \cdot to$	n		
Truck + Ser									
(40 Tons)		iler (Ty s Whe	pe 353A	<u>)</u> '	6.5 13.0	43 4' 6.5 13.0	, 20'		
I	P 5∙0ft	$+ \frac{P_6}{P_6}$	-	P ₆ ·1			$\mathbf{P_7} \coloneqq 0.3$ 39ft + 43f		

3rd St. Bridge-FHWA #12250 City of Waverly	Load Rating	22 05-14-15
	Legal Load Rating Summary	
	Type_4 = $13 \cdot ton$	
	$Type_3S3 = 16 \cdot ton$	
	$Type_3_3 = 17 \cdot ton$	
	WEIGHT LIMIT 13 16	

Brd St. Bridge-FHWA #12250 City of Waverly) Load 	d Rati	ng						(23)5-14-15
			VALK (ONLY ve Load						
	<u>-</u>	cuco		<u>ve Loau</u>						
LL Panel Point Load (west)	 LI	∠ped_3	:= 5 f t	L _{panel_1} .v	Wped_L	_L = 7.72	·k			
		loot 7	Fruce							
		/est]								
				nalyzed i s shown)	n STA	AD per /	AASHTO L	.RFD Stren	gth I	
21,375 kip 13.510 kip		375 I 3.510 I		21,375 k 13.510 k		27.375 13.510		7.375 kip 3.510 kip	21 375 13.510	kip Kip
<u> </u>				W		- V	Allowable	Allowable	ACTUAL	
	1						Comp.	Tension	ACTUAL LOAD	
	1		Ag	L	r		ø _c P _n	ø _y F _y A _g	? _i P _u	
	1		(in^2)	(in)	(in)	KL/r	k	k k	k	S.R.
2C9x20 (w/ 3/8x15 PL)	L0-U1	TC	16.4	162.66	<mark>3.44</mark>	47.28	402.13		158.3	0.39
2C9x13.25 (w/ 3/8x15 PL)	U1-U2	TC	12.6	205.75	3.56	57.79	293.09		166.9	0.57
2C9x13.25 (w/ 3/8x15 PL)	JU2-U3	TC	12.6	205.75	3.56	57.79	293.09		200.3	0.68
2C9x13.25 (w/ 3/8x15 PL)	U3-U4	TC	12.6	205.75	3.56	57.79	293.09		198.5	0.68
2L5x3.5x9/16 2L5x3.5x9/16	L0-L1	BC BC	11.6 11.6	205.75 205.75	0.97 0.97	212.11 212.11	58.19 58.19		-100.1 -100.1	0.30
2L5x3.5x5/16 + 2L5x3.5x3/8	L2-L3	BC	11.2	205.75	1.02	201.72	62.23		-166.9	0.50
4L5x3.5x7/16	L3-L4	BC	10.2	205.75	1.02	201.72	56.80		-202	0.69
2C8x11.25 (w/ 2"x1/4" lacing)	L1-U1	vert	6.61	252.00	3.16	79.75	134.98		-40.9	0.22
2C8x11.25 (w/ 2"x1/4" lacing)	L2-U2	vert	6.61	252.00	3.16	79.75	134.98		40.9	0.30
2C8x11.25 (w/ 2"x1/4" lacing)	i _{L3-U3}	vert	6.61	252.00	3.16	79.75	134.98		2.2	0.02
2L6x3.5x7/16	U1-L2	diag.	9.04	325.31	0.97	335.37	18.14	257.64	-105.6	0.41
2L5x3x5/16	U2-L3	diag.	4.81	325.31	0.85	382.72	7.41	137.09	-52.8	0.39
2L2.5x2.5x1/4	U3-L4	diag.	2.37	162.66	0.76	214.02	11.68	67.55	-2.8	0.04
	l I Me	ember	L3-L4	controls						
	1			R Pedest	rian I	ad Dati	na:			
	I AA	SHI		IN F EUESI		Jau Rall	ng.			
L3-L4 Capacity	C _t	russ_8	:= min	$(0.85, \mathbf{\varphi_{c_{-}}})$	truss_1	$\cdot \varphi_{s_truss_}$	_ 1)·291.8 k			
L3-L4 DL	ļ γI)L _{trus}	s_8 ≔ 1	.25.108.2	k					
L3-L4 LL	$\frac{1}{1}$ γI	Ltruss	s_8 ≔ 1	.75·38.1 k						
Inventory Rating		V _{truss}	8 := w	ped_LL · C	russ_8 γL	– γDL _{tr} L _{truss_8}	<u>uss_8</u> = 118	.75 · psf		
Operating Rating		PR _{trus}	_{is_8} := 1	^w ped_LL [·]	truss_8 γLL _{tru}	$-\gamma DL_{tr}$	$\frac{russ_8}{35} = 153$	3.94 · psf		
						(1.	13)			

Final Report – 3rd St SE Bridge Evaluation & Feasibility Study

Rehabilitation Cost Opinions

		3rd Street Bridge Option 2 - Rehabilitate for Pedestrian Use COST ESTIMATE SHEET	Description:	Rehabilit accommo pedestria	odate an use.	- - -	Check By: Page 1 of	
ITEM #	ITEM CODE	BID ITEM DESCRIPTION			QUANTITY	UNIT	RATE	TOTAL
1	2212-5070310	PATCH, FULL-DEPTH REPAIR			200	SY	101.18	20236.00
2		STD/S-F PCC PAV'T, CL C CL 3, 10"			500		45.47	22735.00
3		REMVL (DECK & S.W.)			1		40000	40000.00
4		STRUCT CONC (BRIDGE)				CY	476.26	23813.00
5		REINFORC STEEL			8000		0.91	7280.00
6		REPAIR BEAM, HEAT STRAIGHTEN				EA	29740.47992	89221.44
7		STRUCTURAL STEEL			3100		20140.41002	18600.00
8		TREATED TIMBER+LUMBER				MFBM	9073.901905	165145.01
9		TEMP SHORING			10.2	LS	200000	200000.00
10		ENGINEER FABRIC			5000		2.8	14000.00
11		REVETMENT, CLASS E				TON	39.04	156160.00
12		MOBILIZATION			4000	LS	113578.5682	113578.57
12	2333-4900003	ENGINEERING SERVICES			1	LS	174153.8045	174153.80
13					· · · ·	1.5	174155.0045	174155.00
14							1	<u> </u>
16								
10								
17								
10								
20								
20								
22								
23								
24								
25 26								
20								
27								
28								
30 31								
32								
33 34						1	1	┝────┨
34		ł			ł	ł	1	⊢
35		ł			ł	ł	1	<u> </u>
30								
37		ł			ł	ł	1	⊢
39								
39 40								
40								
41								
						l		
43					l	l		<u> </u>
44								┝────┨
45								┝────┨
46						ł		⊢I
47								┝────┨
48					l	ł		⊢I
49						l	ł	ļ]
50						 	Tatal Orist 0	1011000.00
							Total Cost \$	1044922.83

		3rd Street Bridge Option 3 - Rehabilitate for Vehicular Use	Description:	accommo	ate bridge to odate vehicular strian use.		Date: Est. By: Check By:	7/21/2015 TJM
		COST ESTIMATE SHEET					Page 1 of	1
ITEM #	ITEM CODE	BID ITEM DESCRIPTION			QUANTITY	UNIT	RATE	TOTAL
1		PATCH, FULL-DEPTH REPAIR			200		101.18	20236.00
2		STD/S-F PCC PAV'T, CL C CL 3, 10"			500		45.47	22735.00
3		STRUCT CONC (BRIDGE)			50	CY	476.26	23813.00
4		REINFORC STEEL			8000		0.91	7280.00
5	2408-6772011	REPAIR BEAM, HEAT STRAIGHTEN			3	EA	29740.47992	89221.44
6	2408-7800000	STRUCTURAL STEEL			120000	LB	6	720000.00
7	2501-8400172	TEMP SHORING			1	LS	200000	200000.00
8	2507-3250005	ENGINEER FABRIC			5000	SY	2.8	14000.00
9		REVETMENT, CLASS E			4000	TON	39.04	156160.00
10	2533-4980005	MOBILIZATION			1	LS	188016.816	188016.82
11		ENGINEERING SERVICES			1	LS	288292.4511	288292.45
12								
13								
14								
15								
16								
17								
18								
19								
20								
21								
22								
23								
24								
25								
26								
27								
28								
29								
30								
31								
32								
33							ļ	
34								
35							l	
36							I	
37							l	
38							l	
39								
40								
41								
42							ł	
43 44								
45							l	
46								
47								
48							l	
49							l	
50							Total Cost @	1720754 74
							Total Cost \$	1729754.71

5
D

3rd Street Bridge Option 4 - Replace w/ New Pedestrian Bridge

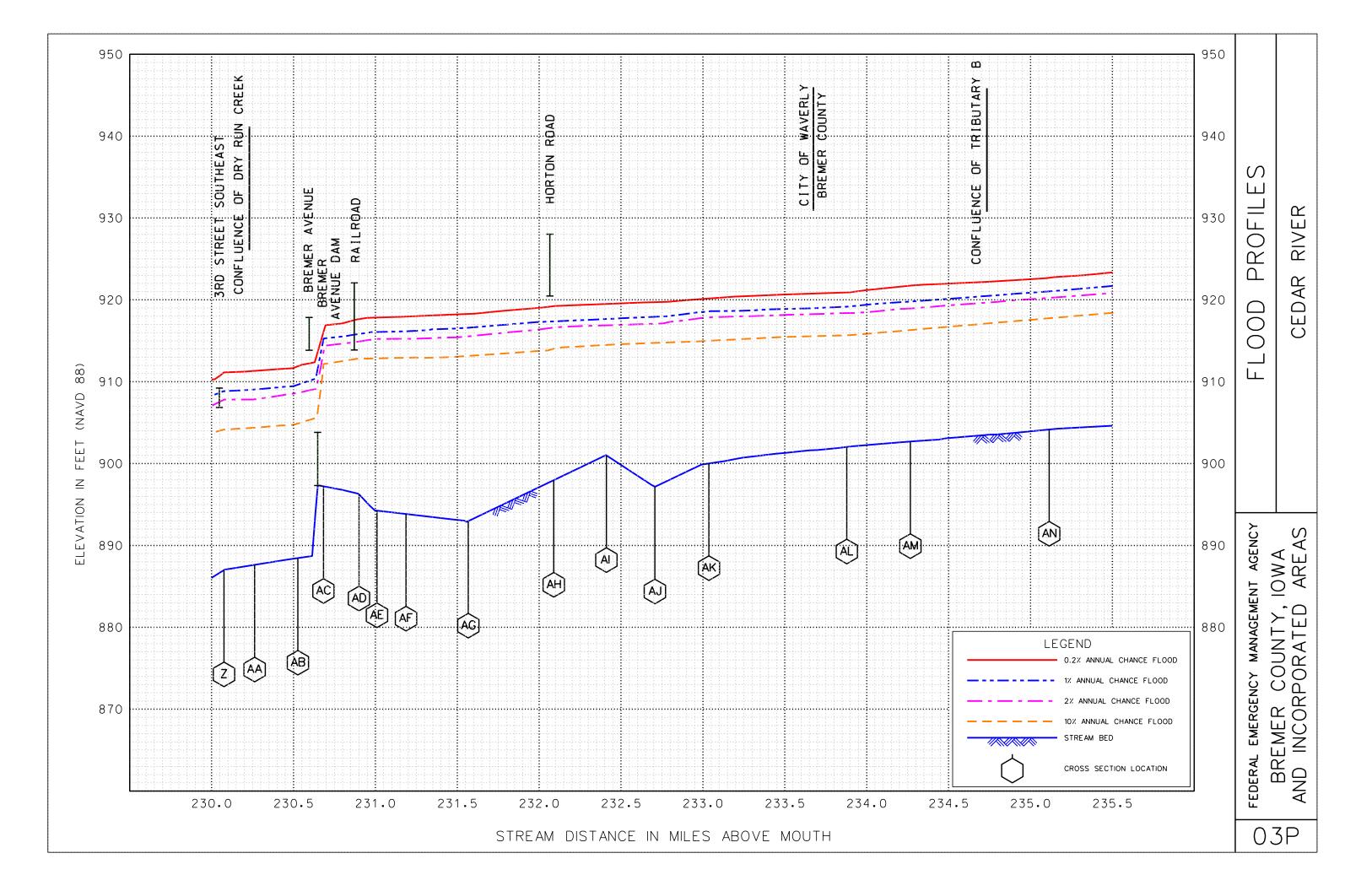
Description: Replace with 3 span Steel Truss bridge, 360' x14' for pedestrian use. Date: 7/21/2015 Est. By: Check By: TJM

COST ESTIMATE SHEET

					Page 1 of	1
ITEM #	ITEM CODE	BID ITEM DESCRIPTION	QUANTITY	UNIT	RATE	TOTAL
1		RMVL OF EXIST STRUCT	1	LS	65000	65000.00
2		EXCAVATION, CL 20	500		20.45	10225.00
3		STRUCT CONC (BRIDGE)	840		476.26	400058.40
4		REINFORC STEEL	143000		0.91	130130.00
5		PRE-ENGINEERED STEEL TRUSS TRAIL BRDG,		EACH	160000	480000.00
6	2501-0201057	PILE, STEEL, HP 10X57	1200	LF	40.66	48792.00
7	2507-3250005	ENGINEER FABRIC	3000		2.8	8400.00
8	2507-6800061	REVETMENT, CLASS E	2500	TON	39.04	97600.00
9	2533-4980005	MOBILIZATION	1	LS	186030.81	186030.81
10		ENGINEERING SERVICES	1	LS	285247.242	285247.24
11						
12						
13						
15						
16						
17						
18						
19						
20						
21						
22						
23						
24						
25						
26						
27						
28						
29						
30						
31						
32						
33						
34						
35						
36						
37						
38						
39						
40						
41						
42						
43	1			1	1 1	
44	i			1	1 1	
45	i			1	1 1	
46	1			1	1 1	
47	1			1	1 1	
48					1 1	
49					1 1	
50					1 1	
50	1			I	Total Cost \$	

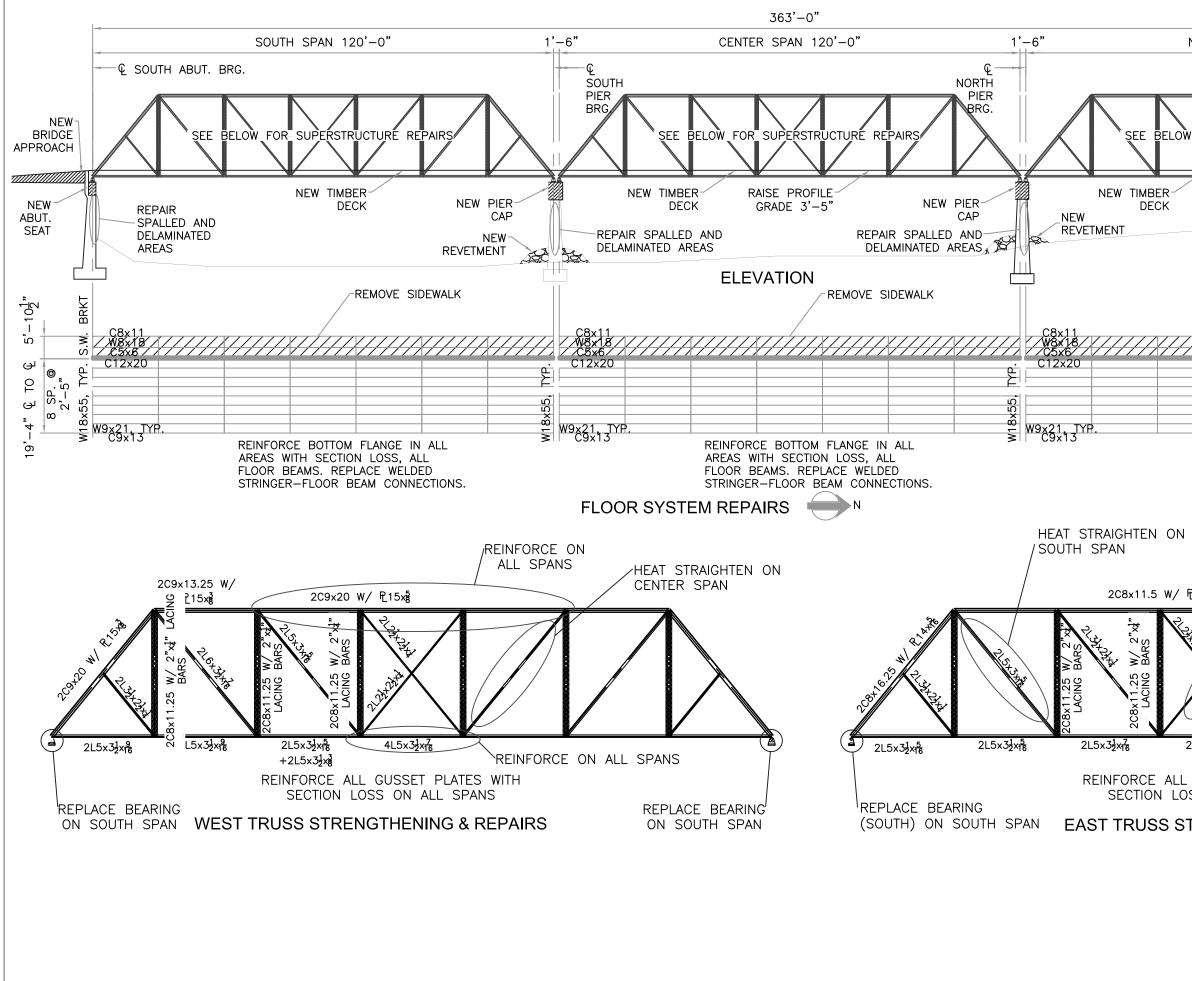
V		3rd Street Bridge Option 5 - Replace In-Kind	Description:	Steel Tru	with 3 span ss bridge, 360' ehicular and		Date: Est. By: Check By:	7/20/2015 TJM
		COST ESTIMATE SHEET		pedestria	n use.	-	Page 1 of	1
ITEM #	ITEM CODE	BID ITEM DESCRIPTION			QUANTITY	UNIT	RATE	TOTAL
1		STD/S-F PCC PAV'T, CL C CL 3, 10"			500	SY	45.47	22735.00
2		RMVL OF EXIST STRUCT			1		65000	65000.00
3		EXCAVATION, CL 20			500		20.45	10225.00
4	2403-0100010	STRUCT CONC (BRIDGE)			1200	CY	476.26	571512.00
5	2404-7775000	REINFORC STEEL			204000	LB	0.91	185640.00
6		STRUCTURAL STEEL			500000	LB	1.8	900000.00
7	2414-6424110	CONC BARRIER RAIL			720	LF	51.23	36885.60
8		STRUCTURAL STEEL PEDESTRIAN HAND RAIL			360	LF	110.94	39938.40
9	2414-6625502	STRUCT STEEL RAIL, TRAFFIC			360	LF	60	21600.00
10		PILE, STEEL, HP 10X57			3000		40.66	
11		ENGINEER FABRIC			5000		2.8	14000.00
12		REVETMENT, CLASS E			4000	TON	39.04	156160.00
13	2533-4980005	MOBILIZATION			1	LS	321851.4	
15		ENGINEERING SERVICES			1	LS	493505.48	493505.48
16								
17								
18								
19								
20								
21								
22								
23 24								
24								
25								
20							1	
28								
29								
30								
31							Î	
32								
33							1	
34						l	I	
35								
36								
37								
38								
39								
40						I		
41								
42							l	L
43							l	L
44						l	ļ	
45						l	ļ	
46						I	Į	
47						I	Į	
48					-	ł	1	{
49								╉────┤
50						ļ	Total Cost \$	2961032.88

\mathbf{N}		3rd Street Bridge	Description:				Date:	7/20/2015
C		Option 6 - Replace w/ PPCB Bridge		for vehicu			Est. By: Check By:	TJM
		COST ESTIMATE SHEET		pedestria	n use.		Page 1 of	1
ITEM #	ITEM CODE	BID ITEM DESCRIPTION			QUANTITY	UNIT	RATE	TOTAL
1	2301-1033100	STD/S-F PCC PAV'T, CL C CL 3, 10"			500	SY	45.47	22735.00
2		RMVL OF EXIST STRUCT			1	LS	65000	65000.00
3	2402-2720000	EXCAVATION, CL 20			500	CY	20.45	10225.00
4	2403-0100010	STRUCT CONC (BRIDGE)			1300	CY	476.26	619138.00
5		REINFORC STEEL			207000		0.91	188370.00
6		BEAM, PPC, BTC120				EACH	26125	
7		STRUCTURAL STEEL			4800		1.31	6288.00
8		CONC BARRIER RAIL			720		51.23	36885.60
9		STRUCTURAL STEEL PEDESTRIAN HAND RAIL			360		110.94	39938.40
10		STRUCT STEEL RAIL, TRAFFIC			360		60	21600.00
11		PILE, STEEL, HP 10X57			3000		40.66	121980.00
12		ENGINEER FABRIC			5000		2.8	
13 14		REVETMENT, CLASS E MOBILIZATION			4000		39.04	
14	2535-4960005	ENGINEERING SERVICES			1	LS LS	265885.5 407691.1	407691.10
16						L3	407091.1	407091.10
10								
18								
10								
20							1	
21								1
22								
23								
24								
25								
26								
27								
28								
29								
30								
31 32								
32								
33							1	ł
34							1	ł
36							1	t
37							1	ł
38							1	
39							1	
40								
41								
42								
43								
44							1	ļ
45							ļ	
46							ļ	
47							Į	
48							ł	ł
49 50							l	
50							Total Cost \$	2446146.60
							i ulai Gusi \$	2440140.00

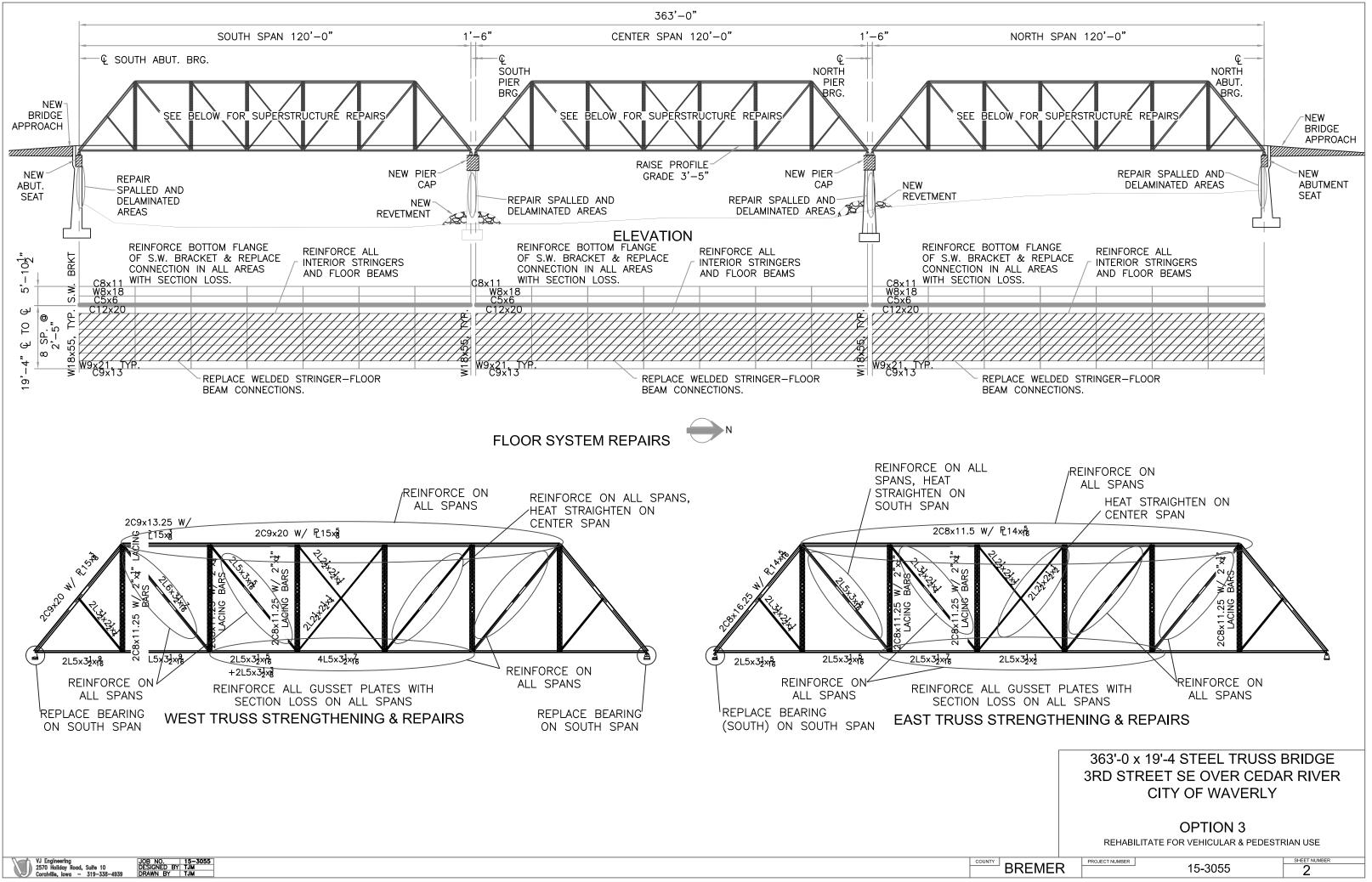

Final Report – 3rd St SE Bridge Evaluation & Feasibility Study

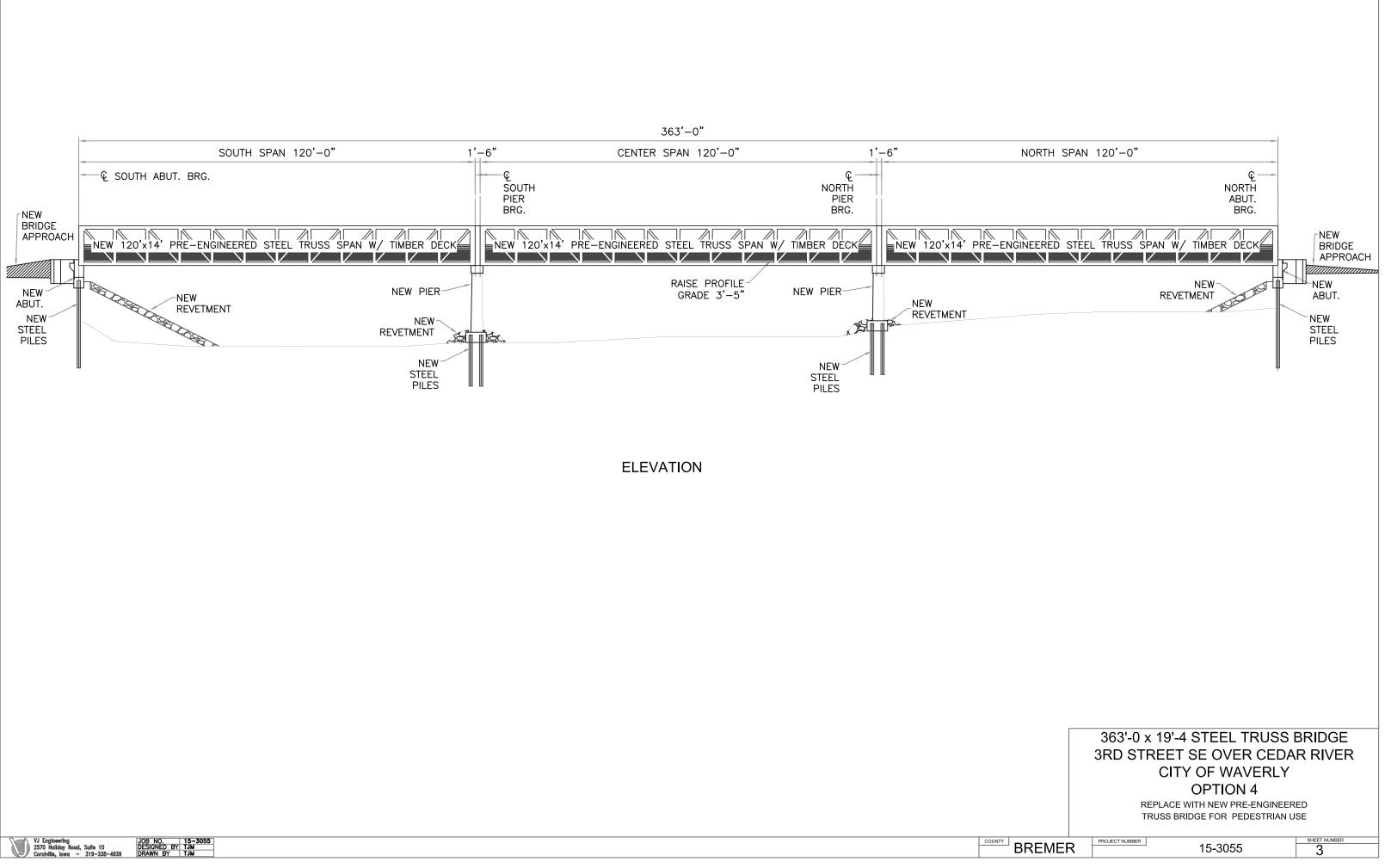
2008 FEMA FIS

	FLOODING SOURCE				1-PERCENT-ANNUAL-CHANCE FLOOD WATER SURFACE ELEVATION						
CROSS SECTION	DISTANCE ¹	WIDTH	SECTION AREA	MEAN VELOCITY	REGULATORY	WITHOUT FLOODWAY	WITH FLOODWAY	INCREASE			
		(FEET)	(SQ.FEET)	(FEET/SEC.)	(FEET NAVD)	(FEET NAVD)	(FEET NAVD)	(FEET)			
CEDAR RIVER											
А	219.24	480	7,365	5.6	883.9	883.9	884.8	0.9			
В	219.33	325	4,668	8.8	883.9	883.9	884.8	0.9			
С	219.42	328	4,872	8.4	884.8	884.8	885.5	0.7			
D	219.52	430	6,771	6.1	886.2	886.2	886.7	0.5			
Е	219.74	508	7,201	5.7	887.0	887.0	887.4	0.4			
F	220.03	670	9,481	4.3	888.3	888.3	888.7	0.4			
G	220.62	420	7,566	5.4	889.3	889.3	889.8	0.5			
Ĥ	221.89	1,100	14,834	2.8	891.5	891.5	892.2	0.7			
	222.76	1,650	17,935	2.3	892.8	892.8	893.6	0.8			
	223.37	930	10,559	3.9	893.8	893.8	894.6	0.8			
ĸ	223.90	1,749	17,227	2.4	895.2	895.2	896.1	0.9			
	224.35	2,180	19,210	2.1	895.9	895.9	896.8	0.9			
M	225.06	1,200	13,746	3.0	897.0	897.0	897.9	0.9			
N	225.65	440	6,980	5.6	898.6	898.6	899.5	0.9			
0	226.12	1,340	15,682	2.5	900.0	900.0	901.0	1.0			
P	226.47	560	9,028	4.3	900.0	900.4	901.4	1.0			
Q	227.14	780	10,374	3.0	900.4	900.4 901.8	902.8	1.0			
R	227.73	361	7,054	5.5	902.9	902.9	903.9	1.0			
S	228.10	900	5,936	5.5 6.5	902.9 903.8	902.9	903.9 904.7	0.9			
T	228.10	900	7,384	5.2	903.8 905.0	903.8 905.0	904.7 906.0	0.9 1.0			
U	228.59			5.2			906.5	0.9			
U V	228.59	710	7,066 9,861	5.5 3.9	905.6 906.5	905.6 906.5	906.5 907.4	0.9 0.9			
Ŵ		1,000									
	229.16	700	8,663	4.5	906.7	906.7	907.7	1.0			
X	229.39	700	10,492	3.7	907.3	907.3	908.2	0.9			
Y	229.82	950	12,866	3.0	908.0	908.0	908.9	0.9			
Z	230.08	470	8,336	4.6	908.6	908.6	909.5	0.9			
LES ABOVE MOUTH											
					FLOOD	WAY DATA					
	R COUNTY, RPORATED AREAS		CEDAR RIVER								


FLOODING SC	OURCE		FLOODWAY		1-F		AL-CHANCE FLOO CE ELEVATION	D
CROSS SECTION	DISTANCE ¹	WIDTH (FEET)	SECTION AREA (SQ.FEET)	MEAN VELOCITY (FEET/SEC.)	REGULATORY (FEET NAVD)	WITHOUT FLOODWAY (FEET NAVD)	WITH FLOODWAY (FEET NAVD)	INCREASE (FEET)
CEDAR RIVER		(1 = = 1)		(1 LL 1/3LO.)	(ILLINAVD)			(1 = = 1)
AA AB AC AD AE AF AG AH AI AJ AK AL AM AN AO AP AQ AR	230.26 230.52 230.67 230.90 231.00 231.18 231.56 232.09 232.41 232.70 233.02 233.87 234.26 235.11 236.33 236.56 236.91 237.05	550 346 510 960 1,028 1,130 1,050 605 1,250 1,150 1,300 1,710 1,650 1,790 1,190 1,170 369 990	9,216 5,709 8,259 13,972 15,652 16,295 11,610 9,253 14,655 13,400 18,936 20,874 18,437 19,746 13,638 13,179 5,691 13,693	4.2 6.8 4.7 2.8 2.5 2.4 3.3 4.2 2.6 2.9 2.0 1.8 2.1 2.0 2.8 2.9 6.7 2.8	909.0 909.5 915.2 915.9 916.0 916.1 916.4 917.3 917.7 917.9 918.5 919.1 919.7 920.9 922.8 923.4 923.4 924.1 925.3	909.0 909.5 915.2 915.9 916.0 916.1 916.4 917.3 917.7 917.9 918.5 919.1 919.7 920.9 922.8 923.4 923.4 924.1 925.3	909.8 910.3 915.3 916.2 916.3 916.4 916.6 917.8 918.4 918.6 919.1 919.8 920.4 921.7 923.7 924.3 925.0 925.9	0.8 0.8 0.1 0.3 0.3 0.2 0.5 0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.9 0.9 0.9 0.9
BREME	ENCY MANAGEMENT AG R COUNTY, I RPORATED AREAS	A				WAY DATA		

Final Report – 3rd St SE Bridge Evaluation & Feasibility Study

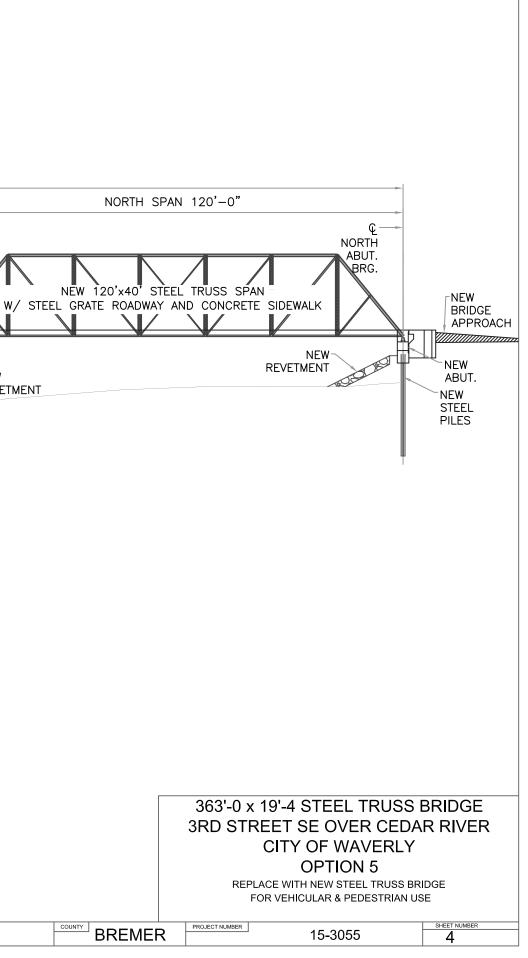

APPENDIX E DRAWINGS

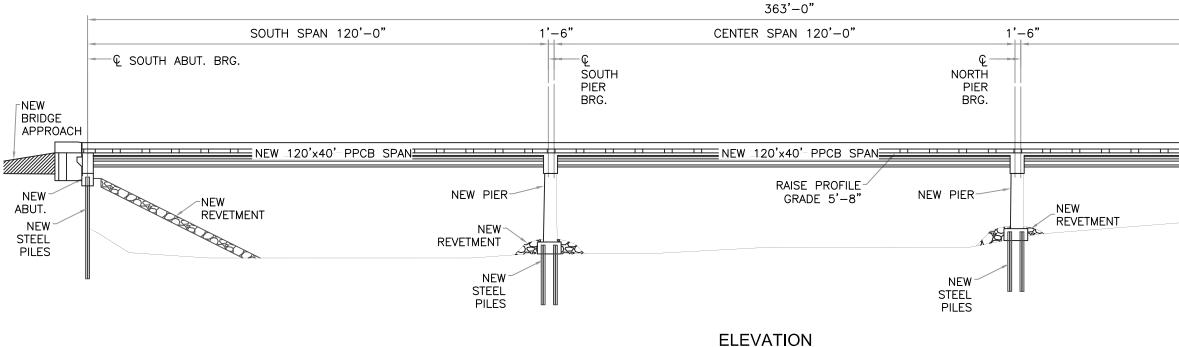


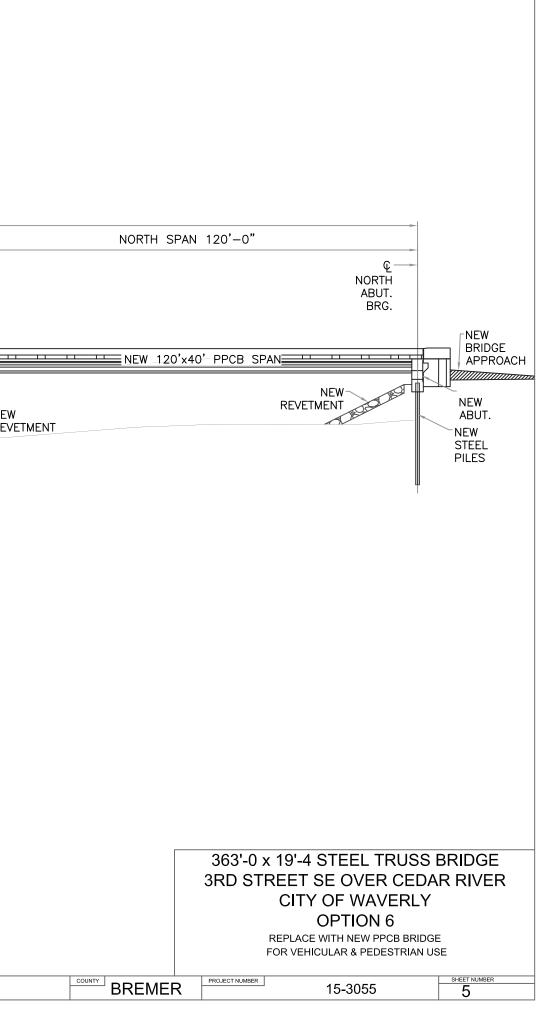

JOB NO. 15-3055 DESIGNED BY TJM DRAWN BY TJM

VJ Engineering 2570 Holiday Road, Suite 10

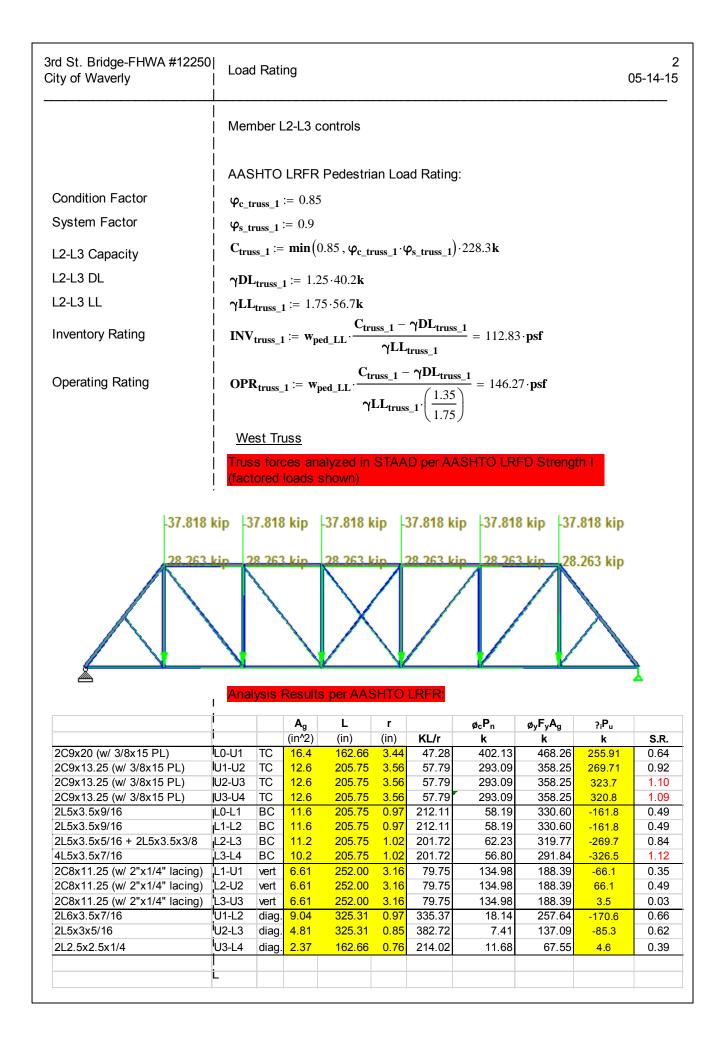
NORTH SP	AN 120'-0"
	ę
	NORTH ABUT. BRG.
	-NEW BRIDGE APPROACH
	REPAIR SPALLED AND NEW DELAMINATED AREAS ABUTMENT
	SEAT
	/ REMOVE SIDEWALK
AR	NFORCE BOTTOM FLANGE IN ALL EAS WITH SECTION LOSS, ALL DOR BEAMS. REPLACE WELDED
	RINGER-FLOOR BEAM CONNECTIONS.
	HEAT STRAIGHTEN ON / CENTER SPAN
₽14×16	
	BAR'S
	CIN25
$\bigcirc \setminus$	Lacing
2L5x3 ¹ ₂ x ¹ ₂	
GUSSET	PLATES WITH
SS ON AL	L SPANS
TRENGT	HENING & REPAIRS
Γ	363'-0 x 19'-4 STEEL TRUSS BRIDGE
	3RD STREET SE OVER CEDAR RIVER CITY OF WAVERLY
	OPTION 2
	REHABILITATE FOR PEDESTRIAN USE
BREMER	15-3055 1

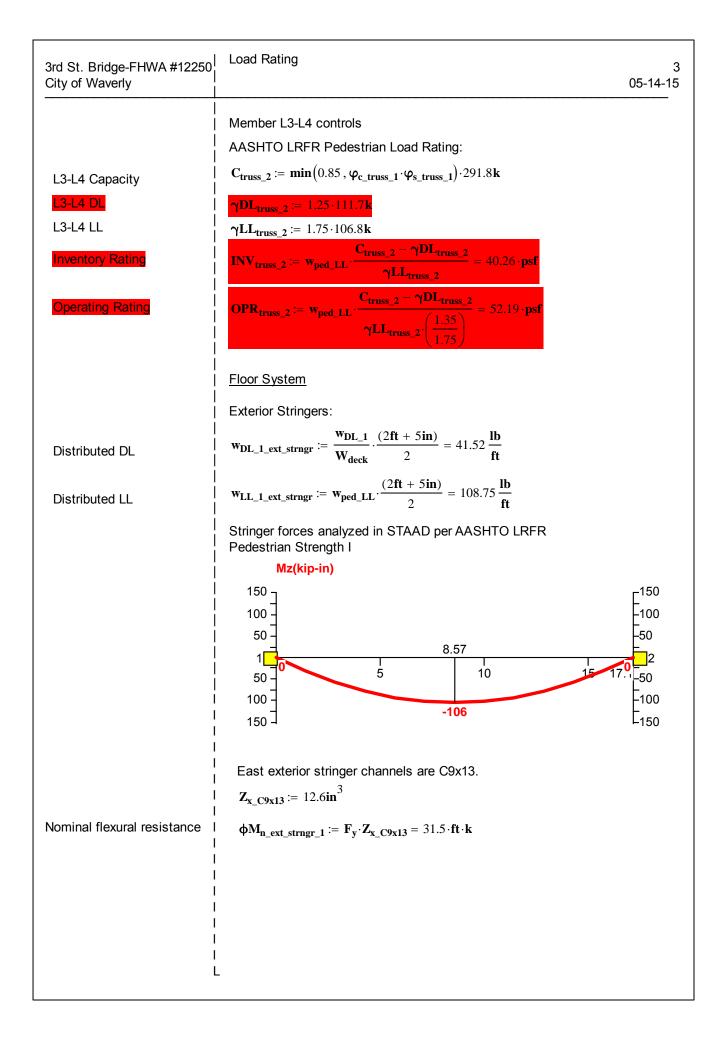





VJ Engineering 2570 Holiday Road, Suite 10 Coralville, Iowa – 319–338–493

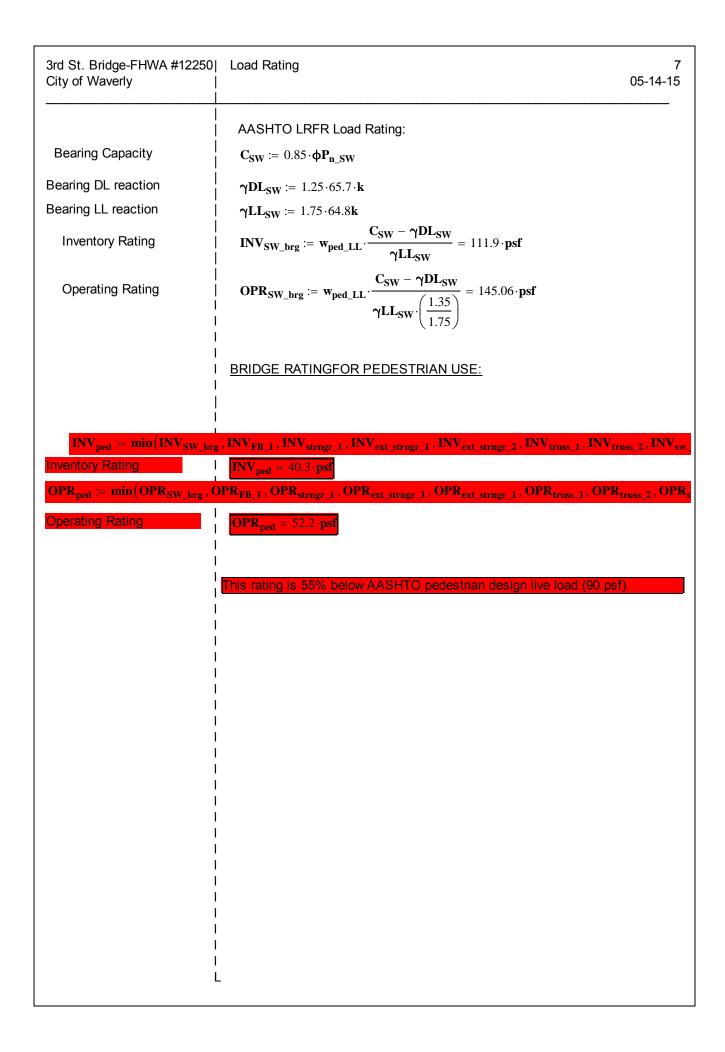
JOB NO. 15-3055 DESIGNED BY TJM DRAWN BY TJM

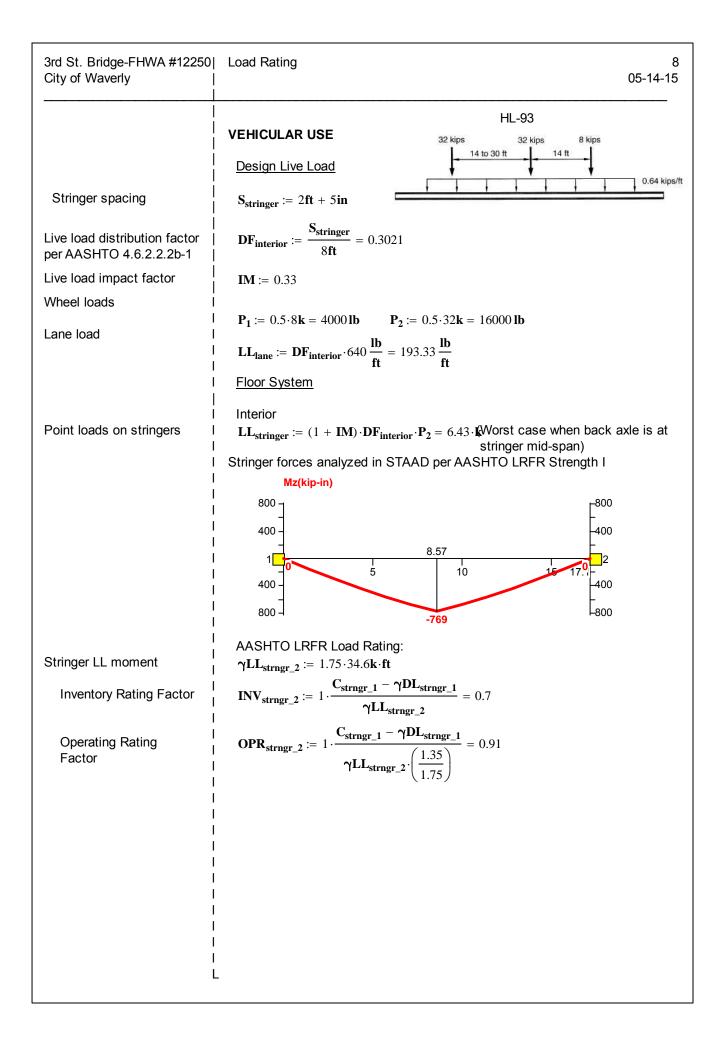


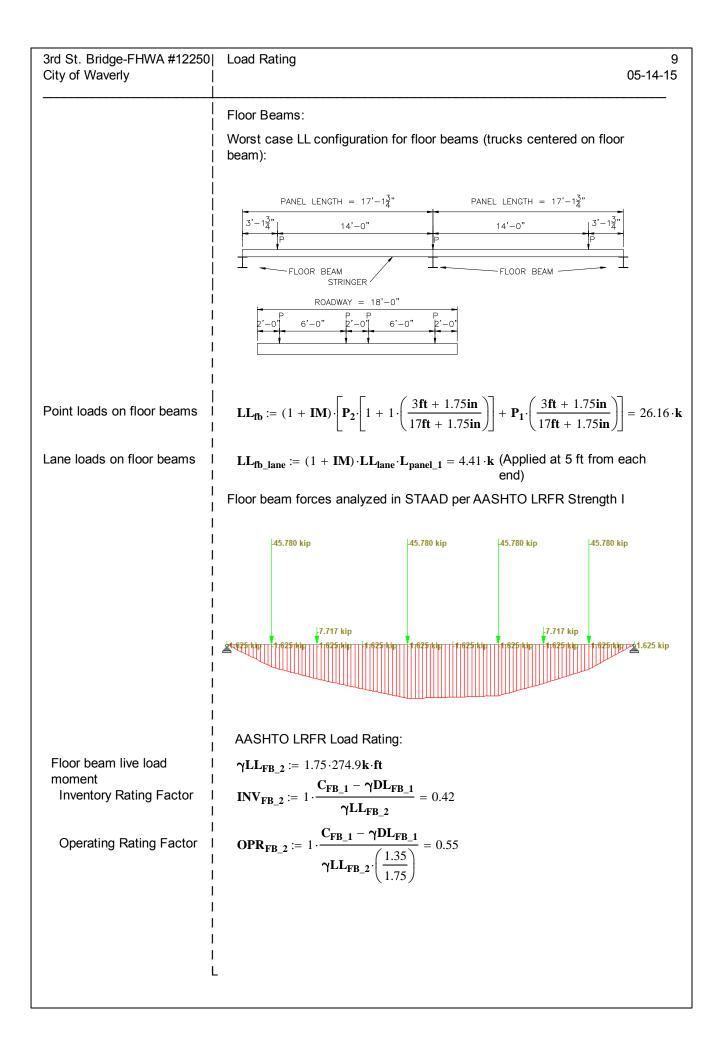


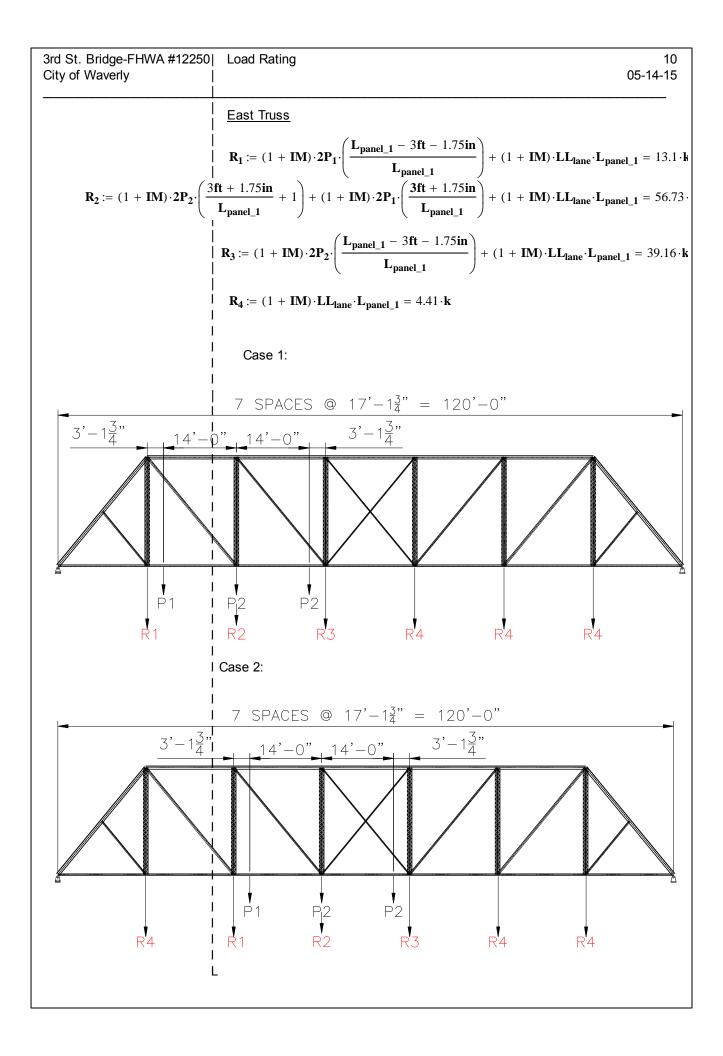
VJ Engineering 2570 Holiday Road, Suite 10

3rd St. Bridge-FHWA #122	250 Load Rating
City of Waverly	RED HIGHLIGHT = REVISIONS MADE ON 10-23-15
	PEDESTRIAN ONLY USE
On any law with	Deck width
Span length	$\mathbf{L}_{\mathbf{span}_1} \coloneqq 120 \mathbf{ft}$ $\mathbf{W}_{\mathbf{deck}} \coloneqq 18 \mathbf{ft}$
Panel length	$L_{\text{panel 1}} := 17.15 \text{ ft}$ $F_{\text{v}} := 30 \text{ ksi}$ per IDOT HR-239
e en er rengen	panei_i y
	<u>Dead Load</u>
Diff. between wood and ste	$\mathbf{DL}_{corrected} := 18\mathbf{psf} \cdot 18\mathbf{ft} \cdot .5 - [50\mathbf{pcf} \cdot (3\mathbf{in} + 2\mathbf{in}) \cdot 18\mathbf{ft} \cdot .5 + 2\mathbf{psf} \cdot 18\mathbf{ft} \cdot .5] =$
deck (east truss)	$DL_corrected := 10pst \cdot 10tt \cdot .5 - [50pct \cdot (5tt + 2tt)) \cdot 10tt \cdot .5 + 2pst \cdot 10tt \cdot .5] =$
Corrected DL (east truss)	and the second state of th
Confected DE (cast tiuss)	$\mathbf{w_{DL_1}} \coloneqq 575 \frac{\mathbf{lb}}{\mathbf{ft}} - \mathbf{DL}_{\mathbf{corrected}} = 618.5 \frac{\mathbf{lb}}{\mathbf{ft}}$ Difference_% ₁ := $\frac{ \mathbf{DL}_{\mathbf{corrected}} }{\mathbf{w}} = 7.03.\%$
% Difference (east truce)	DL_corrected 7.02.0/
%Difference (east truss)	Difference_ $\%_1 := \frac{1}{10000000000000000000000000000000000$
Corrected DL (west truss)	$w_{DL,2} := 1275 \frac{10}{2} - DL$ corrected = 1318.5 $\frac{10}{2}$
	ft ft
%Difference (west truss)	$w_{DL_2} := 1275 \frac{lb}{ft} - DL_corrected = 1318.5 \frac{lb}{ft}$ Difference_% ₂ := $\frac{ DL_corrected }{w_{DL_2}} = 3.3 \cdot \%$
	W _{DL2}
DL Panel Point Load	$\mathbf{DL}_1 := \mathbf{L}_{\text{panel } 1} \cdot \mathbf{w}_{\mathbf{DL} 1} = 10.61 \cdot \mathbf{k} \qquad \mathbf{DL}_2 := \mathbf{L}_{\text{panel } 1} \cdot \mathbf{w}_{\mathbf{DL} 2} = 22.61 \cdot \mathbf{k}$
	DD1: Dpanel_1 "DL1 10:01 h
	Pedestrian Live Load
AASHTO pedestrian LL	$\mathbf{w}_{\mathbf{ped_LL}} \coloneqq 90\mathbf{psf}$
per LRFD 3.6.1.6	
	$LL_{ped_{1}} := \frac{W_{deck}}{2} \cdot L_{panel_{1}} \cdot w_{ped_{LL}} = 13.89 \cdot k$
	L L L mod 1 = L monol 1 W mod L I = L 0.07 N
I Panel Point Load (east)	panel_1 ~ peu_l 2 ~ panel_1 ~ peu_l 2
LL Panel Point Load (east)	$\frac{2}{1}$
	$\frac{2}{1}$
	$ \begin{bmatrix} 2 \\ W_{deck} \end{bmatrix} = \begin{bmatrix} 2 \\ W_{deck} \end{bmatrix} $
LL Panel Point Load (east)	$\frac{2}{1}$
	$ \begin{array}{c c} \mathbf{L} & \mathbf{L} \\ \mathbf{L} \\$
	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \vdots \\ t \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} LL_{ped_2} \coloneqq \left(\frac{W_{deck}}{2} + 5ft \right) \cdot L_{panel_1} \cdot w_{ped_LL} = 21.61 \cdot k \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $
	$ \begin{array}{c c} \mathbf{L} & \mathbf{L} \\ \mathbf{L} \\$
	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \vdots \\ t \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} LL_{ped_2} \coloneqq \left(\frac{W_{deck}}{2} + 5ft \right) \cdot L_{panel_1} \cdot w_{ped_LL} = 21.61 \cdot k \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $
	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \vdots \\ t \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} LL_{ped_2} \coloneqq \left(\frac{W_{deck}}{2} + 5ft \right) \cdot L_{panel_1} \cdot w_{ped_LL} = 21.61 \cdot k \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $
	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $
	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $
	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $
	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $
	$LL_{ped_2} := \left(\frac{W_{deck}}{2} + 5ft\right) \cdot L_{panel_1} \cdot w_{ped_{LL}} = 21.61 \cdot k$ $Last Truss$ $Truss forces analyzed in STAAD per AASHTO LRFD Strength I (factored loads shown)$ $24.308 kip = 24.308 kip = 24.308 kip = 24.308 kip = 24.308 kip$
	$LL_{ped_2} := \left(\frac{W_{deck}}{2} + 5ft\right) \cdot L_{panel_1} \cdot w_{ped_{LL}} = 21.61 \cdot k$ $Last Truss$ $Truss forces analyzed in STAAD per AASHTO LRFD Strength I (factored loads shown)$ $24.308 kip = 24.308 kip = 24.308 kip = 24.308 kip = 24.308 kip$
	$LL_{ped_2} := \left(\frac{W_{deck}}{2} + 5ft\right) \cdot L_{panel_1} \cdot w_{ped_{LL}} = 21.61 \cdot k$ $Last Truss$ $Truss forces analyzed in STAAD per AASHTO LRFD Strength I (factored loads shown)$ $24.308 kip = 24.308 kip = 24.308 kip = 24.308 kip = 24.308 kip$
	$LL_{ped_2} := \left(\frac{W_{deck}}{2} + 5ft\right) \cdot L_{panel_1} \cdot w_{ped_{LL}} = 21.61 \cdot k$ $Last Truss$ $Truss forces analyzed in STAAD per AASHTO LRFD Strength I (factored loads shown)$ $24.308 kip = 24.308 kip = 24.308 kip = 24.308 kip = 24.308 kip$
	$LL_{ped_2} := \left(\frac{W_{deck}}{2} + 5ft\right) \cdot L_{panel_1} \cdot w_{ped_LL} = 21.61 \cdot k$ $East Truss$ $Truss forces analyzed in STAAD per AASHTO LRFD Strength I (factored loads shown) $ $24.308 kip = 24.308 k$
	$LL_{ped_2} := \left(\frac{W_{deck}}{2} + 5ft\right) \cdot L_{panel_1} \cdot w_{ped_LL} = 21.61 \cdot k$ $LL_{ped_2} := \left(\frac{W_{deck}}{2} + 5ft\right) \cdot L_{panel_1} \cdot w_{ped_LL} = 21.61 \cdot k$ $LL_{ped_2} := \left(\frac{W_{deck}}{2} + 5ft\right) \cdot L_{panel_1} \cdot w_{ped_LL} = 21.61 \cdot k$ $LL_{ped_2} := \left(\frac{W_{deck}}{2} + 5ft\right) \cdot L_{panel_1} \cdot w_{ped_LL} = 21.61 \cdot k$ $LL_{ped_2} := \left(\frac{W_{deck}}{2} + 5ft\right) \cdot L_{panel_1} \cdot w_{ped_LL} = 21.61 \cdot k$ $LL_{ped_2} := \left(\frac{W_{deck}}{2} + 5ft\right) \cdot L_{panel_1} \cdot w_{ped_LL} = 21.61 \cdot k$ $LL_{ped_2} := \left(\frac{W_{deck}}{2} + 5ft\right) \cdot L_{panel_1} \cdot w_{ped_LL} = 21.61 \cdot k$ $LL_{ped_2} := \left(\frac{W_{deck}}{2} + 5ft\right) \cdot L_{panel_1} \cdot w_{ped_LL} = 21.61 \cdot k$ $LL_{ped_2} := \left(\frac{W_{deck}}{2} + 5ft\right) \cdot L_{panel_1} \cdot w_{ped_LL} = 21.61 \cdot k$ $LL_{ped_2} := \left(\frac{W_{deck}}{2} + 5ft\right) \cdot L_{panel_1} \cdot w_{ped_LL} = 21.61 \cdot k$ $LL_{ped_2} := \left(\frac{W_{deck}}{2} + 5ft\right) \cdot L_{panel_1} \cdot w_{ped_LL} = 21.61 \cdot k$ $LL_{ped_2} := \left(\frac{W_{deck}}{2} + 5ft\right) \cdot L_{panel_1} \cdot w_{ped_LL} = 21.61 \cdot k$ $LL_{ped_2} := \left(\frac{W_{deck}}{2} + 5ft\right) \cdot L_{panel_1} \cdot w_{ped_LL} = 21.61 \cdot k$ $LL_{ped_2} := \left(\frac{W_{deck}}{2} + 5ft\right) \cdot L_{panel_1} \cdot w_{ped_LL} = 21.61 \cdot k$ $LL_{ped_2} := \left(\frac{W_{deck}}{2} + 5ft\right) \cdot L_{panel_1} \cdot w_{ped_LL} = 21.61 \cdot k$ $LL_{ped_2} := \left(\frac{W_{deck}}{2} + 5ft\right) \cdot L_{panel_1} \cdot w_{ped_LL} = 21.61 \cdot k$ $LL_{ped_2} := \left(\frac{W_{deck}}{2} + 5ft\right) \cdot L_{panel_1} \cdot w_{ped_LL} = 21.61 \cdot k$ $LL_{ped_2} := \left(\frac{W_{deck}}{2} + 5ft\right) \cdot L_{panel_2} \cdot w_{ped_2} + 21.25 \cdot k$ $LL_{ped_2} := \left(\frac{W_{deck}}{2} + 21.25 \cdot k\right) \cdot L_{panel_2} \cdot w_{ped_2} + 21.25 \cdot k$ $LL_{ped_2} := \left(\frac{W_{deck}}{2} + 21.25 \cdot k\right) \cdot L_{panel_2} \cdot w_{ped_2} + 21.25 \cdot k$ $LL_{ped_2} := \left(\frac{W_{deck}}{2} + 21.25 \cdot k\right) \cdot L_{panel_2} \cdot w_{ped_2} + 21.25 \cdot k$ $LL_{ped_2} := \left(\frac{W_{deck}}{2} + 21.25 \cdot k\right) \cdot L_{ped_2} \cdot w_{ped_2} + 21.25 \cdot k$ $LL_{ped_2} := \left(\frac{W_{deck}}{2} + 21.25 \cdot k\right) \cdot L_{ped_2} \cdot w_{ped_2} + 21.25 \cdot k$ $LL_{ped_2} := \left(\frac{W_{deck}}{2} + 21.25 \cdot k\right) \cdot L_{ped_2} \cdot w_{ped_2} + 21.25 \cdot k$ $LL_{ped_2} := \left(\frac{W_{deck}}{2} + 21.25 \cdot k\right) \cdot L_{ped_2} \cdot w_{ped_2} + 21.25 \cdot k$ $LL_{ped_2} := \left($
	$LL_{ped_2} := \left(\frac{W_{deck}}{2} + 5ft\right) \cdot L_{panel_1} \cdot w_{ped_LL} = 21.61 \cdot k$ $LL_{ped_2} := \left(\frac{W_{deck}}{2} + 5ft\right) \cdot L_{panel_1} \cdot w_{ped_LL} = 21.61 \cdot k$ $LL_{ped_2} := \left(\frac{W_{deck}}{2} + 5ft\right) \cdot L_{panel_1} \cdot w_{ped_LL} = 21.61 \cdot k$ $LL_{ped_2} := \left(\frac{W_{deck}}{2} + 5ft\right) \cdot L_{panel_1} \cdot w_{ped_LL} = 21.61 \cdot k$ $LL_{ped_2} := \left(\frac{W_{deck}}{2} + 5ft\right) \cdot L_{panel_1} \cdot w_{ped_LL} = 21.61 \cdot k$ $LL_{ped_2} := \left(\frac{W_{deck}}{2} + 5ft\right) \cdot L_{panel_1} \cdot w_{ped_LL} = 21.61 \cdot k$ $LL_{ped_2} := \left(\frac{W_{deck}}{2} + 5ft\right) \cdot L_{panel_1} \cdot w_{ped_LL} = 21.61 \cdot k$ $LL_{ped_2} := \left(\frac{W_{deck}}{2} + 5ft\right) \cdot L_{panel_1} \cdot w_{ped_LL} = 21.61 \cdot k$ $LL_{ped_2} := \left(\frac{W_{deck}}{2} + 5ft\right) \cdot L_{panel_1} \cdot w_{ped_LL} = 21.61 \cdot k$ $LL_{ped_2} := \left(\frac{W_{deck}}{2} + 5ft\right) \cdot L_{panel_1} \cdot w_{ped_LL} = 21.61 \cdot k$ $LL_{ped_2} := \left(\frac{W_{deck}}{2} + 5ft\right) \cdot L_{panel_1} \cdot w_{ped_LL} = 21.61 \cdot k$ $LL_{ped_2} := \left(\frac{W_{deck}}{2} + 5ft\right) \cdot L_{panel_1} \cdot w_{ped_LL} = 21.61 \cdot k$ $LL_{ped_2} := \left(\frac{W_{deck}}{2} + 5ft\right) \cdot L_{panel_1} \cdot w_{ped_LL} = 21.61 \cdot k$ $LL_{ped_2} := \left(\frac{W_{deck}}{2} + 5ft\right) \cdot L_{panel_1} \cdot w_{ped_LL} = 21.61 \cdot k$ $LL_{ped_2} := \left(\frac{W_{deck}}{2} + 5ft\right) \cdot L_{panel_1} \cdot w_{ped_LL} = 21.61 \cdot k$ $LL_{ped_2} := \left(\frac{W_{deck}}{2} + 5ft\right) \cdot L_{panel_1} \cdot w_{ped_LL} = 21.61 \cdot k$ $LL_{ped_2} := \left(\frac{W_{deck}}{2} + 5ft\right) \cdot L_{panel_1} \cdot w_{ped_LL} = 21.61 \cdot k$ $LL_{ped_2} := \left(\frac{W_{deck}}{2} + 5ft\right) \cdot L_{panel_1} \cdot w_{ped_LL} = 21.61 \cdot k$ $LL_{ped_2} := \left(\frac{W_{deck}}{2} + 5ft\right) \cdot L_{panel_2} \cdot w_{ped_2} \cdot w_{ped_2}$
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
LL Panel Point Load (west	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
L Panel Point Load (west	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
LL Panel Point Load (west	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
LL Panel Point Load (west	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
LL Panel Point Load (west	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
LL Panel Point Load (west 2C8x16.25 (w/ 2C8x11.5 (w/5 2C8x11.5 (w/5) 2C8x11.5 (w/5 2C8x11.5 (w/5 2C8x11.5 (w/5) 2C8x11.5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
LL Panel Point Load (west 2C8x16.25 (w/ 2C8x11.5 (w/ 5 2C8x11.5 (w/ 5 2C8x11.25 (w/ 2L5x3.5x5/16 2L5x3.5x7/16 2L5x3.5x7/16 2L5x3.5x1/2 2C8x11.25 (w/	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
LL Panel Point Load (west 2C8x16.25 (w/ 2C8x11.5 (w/ 5 2C8x11.5 (w/ 5 2C8x11.5 (w/ 5 2C8x11.5 (w/ 5 2C8x11.5 (w/ 5 2C8x11.5 (w/ 5 2L5x3.5x5/16 2L5x3.5x7/16 2L5x3.5x7/16 2L5x3.5x7/16 2L5x3.5x7/16 2L5x3.5x7/16 2L5x3.5x7/16	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
LL Panel Point Load (west 2C8x16.25 (w/ 2C8x11.5 (w/ 5 2C8x11.5 (w/ 5 2C8x11.5 (w/ 5 2C8x11.5 (w/ 5 2C8x11.5 (w/ 5 2C8x11.5 (w/ 5 2L5x3.5x5/16 2L5x3.5x7/16 2L5x3.5x7/16 2L5x3.5x7/16 2L5x3.5x7/16 2L5x3.5x7/16 2L5x3.5x7/16	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
LL Panel Point Load (west 2C8x16.25 (w/ 2C8x11.5 (w/ 5 2C8x11.5 (w/ 5 2C8x11.5 (w/ 5 2C8x11.5 (w/ 5 2C8x11.5 (w/ 5 2L5x3.5x5/16 2L5x3.5x7/16 2L5x3.5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

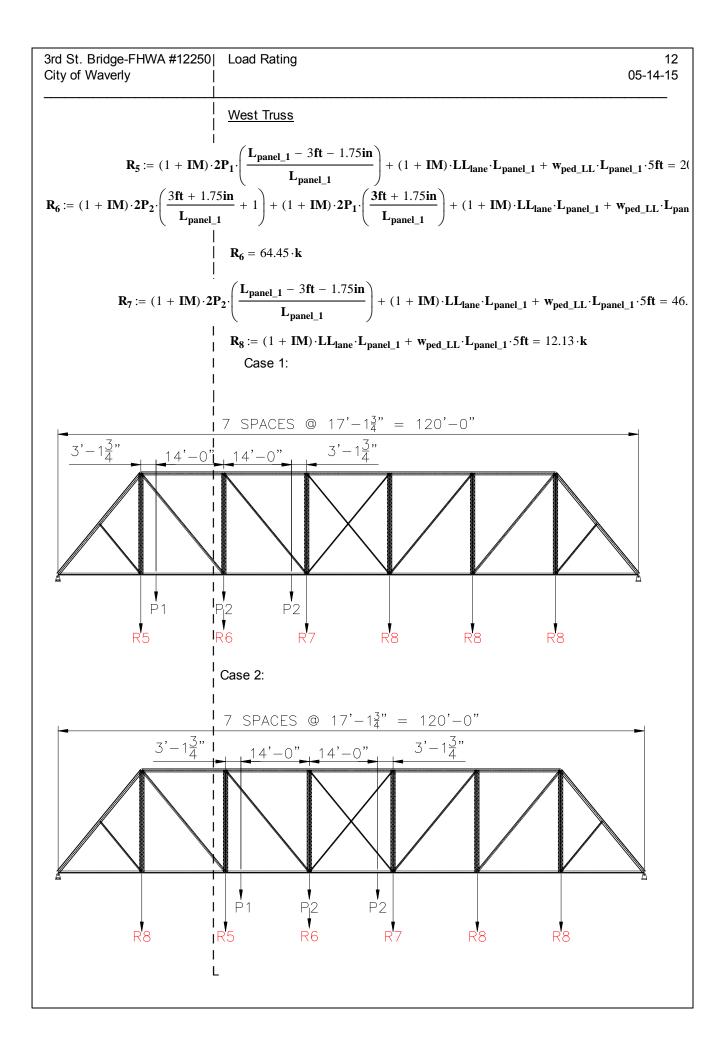


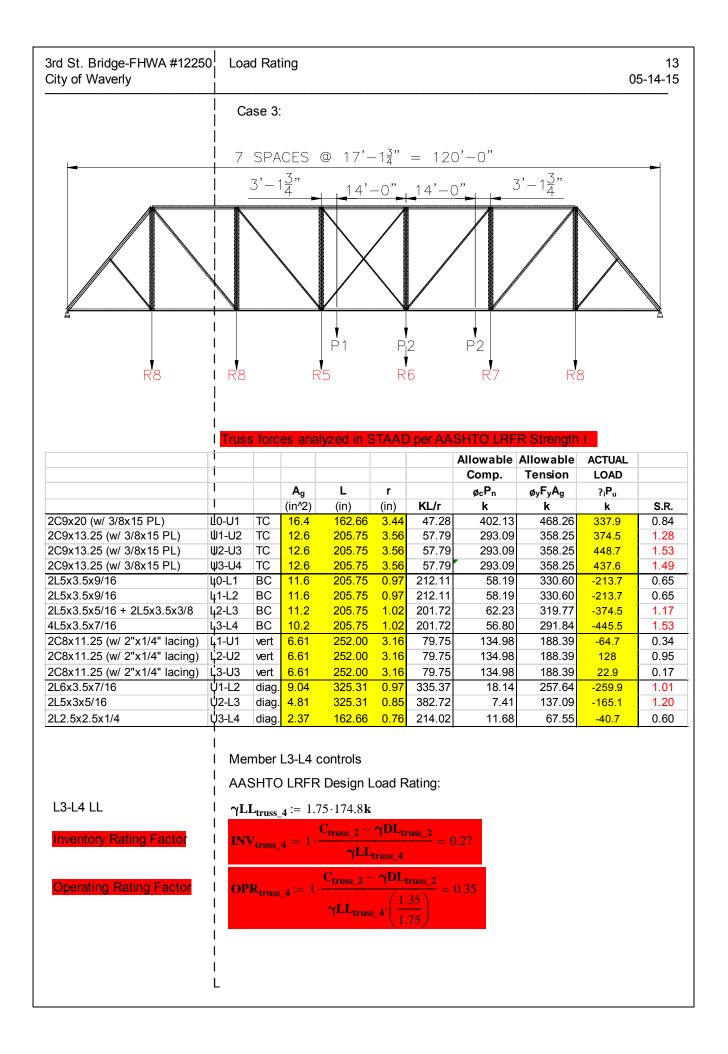


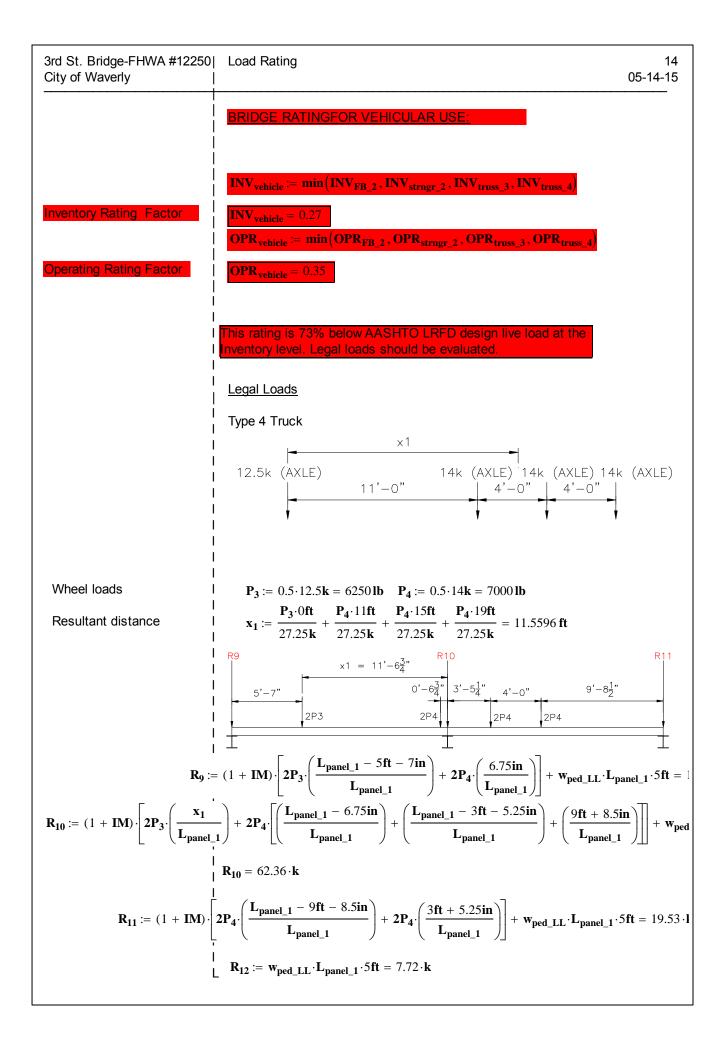

3rd St. Bridge-FHWA #12250 City of Waverly	Load Rating 4 05-14-15
	AASHTO LRFR Pedestrian Load Rating:
Condition Factor	$\boldsymbol{\varphi}_{\mathbf{c}=\mathrm{ext}=\mathrm{strngr}=1} \coloneqq 0.85$
System Factor	$\boldsymbol{\varphi}_{s_ext_strngr_1} := 1$
Exterior Stringer Capacity	$C_{ext_strngr_1} := \phi_{c_ext_strngr_1} \cdot \phi_{s_ext_strngr_1} \cdot \phi_{M_n_ext_strngr_1}$
Exterior Stringer DL moment	$\gamma DL_{ext_strngr_1} := 1.25 \cdot 1.43 ft \cdot k$
Exterior Stringer LL moment	$\gamma LL_{ext_strngr_1} := 1.75 \cdot 4.01 \mathbf{k} \cdot \mathbf{ft}$
Inventory Rating	$INV_{ext_strngr_1} := w_{ped_LL} \cdot \frac{C_{ext_strngr_1} - \gamma DL_{ext_strngr_1}}{\gamma LL_{ext_strngr_1}} = 320.47 \cdot psf$
Operating Rating	$OPR_{ext_strngr_1} := w_{ped_LL} \cdot \frac{C_{ext_strngr_1} - \gamma DL_{ext_strngr_1}}{\gamma LL_{ext_strngr_1} \cdot \left(\frac{1.35}{1.75}\right)} = 415.42 \cdot psf$
	Interior Stringers:
Distributed DL	$\mathbf{w}_{\mathbf{DL_1_strngr}} \coloneqq \frac{\mathbf{w}_{\mathbf{DL_1}}}{\mathbf{W}_{\mathbf{deck}}} \cdot (2\mathbf{ft} + 5\mathbf{in}) = 83.04 \frac{\mathbf{lb}}{\mathbf{ft}}$
Distributed LL	$\mathbf{w}_{\mathbf{LL_1_strngr}} := \mathbf{w}_{\mathbf{ped_LL}} \cdot (2\mathbf{ft} + 5\mathbf{in}) = 217.5 \frac{\mathbf{lb}}{\mathbf{ft}}$
	Stringer forces analyzed in STAAD per AASHTO LRFR Pedestrian Strength I Mz(kip-in) 300 200 100 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 100 200 300 3
	Interior stringers are I9x21
 	$Z_{x_19x21} := 21.7 in^3$
Nominal flexural resistance I I	$\label{eq:phi_strngr_1} \begin{split} & \varphi M_{n_strngr_1} := F_y \cdot Z_{x_19x21} = 54.25 \cdot ft \cdot k \\ & AASHTO \ LRFR \ Load \ Rating : \end{split}$
Stringer Capacity	$C_{strngr_1} \coloneqq \phi_{c_ext_strngr_1} \cdot \phi_{s_ext_strngr_1} \cdot \phi_{M_{n_strngr_1}}$
Stringer DL moment	$\gamma DL_{strngr_1} := 1.25 \cdot 2.83 ft \cdot k$
Stringer LL moment	$\gamma LL_{strngr_1} := 1.75 \cdot 8.02 \mathbf{k} \cdot \mathbf{ft}$
Inventory Rating	$INV_{strngr_1} := w_{ped_LL} \cdot \frac{C_{strngr_1} - \gamma DL_{strngr_1}}{\gamma LL_{strngr_1}} = 273.01 \cdot psf$
Operating Rating I I I L	$OPR_{strngr_1} \coloneqq w_{ped_LL} \cdot \frac{C_{strngr_1} - \gamma DL_{strngr_1}}{\gamma LL_{strngr_1} \cdot \left(\frac{1.35}{1.75}\right)} = 353.91 \cdot psf$

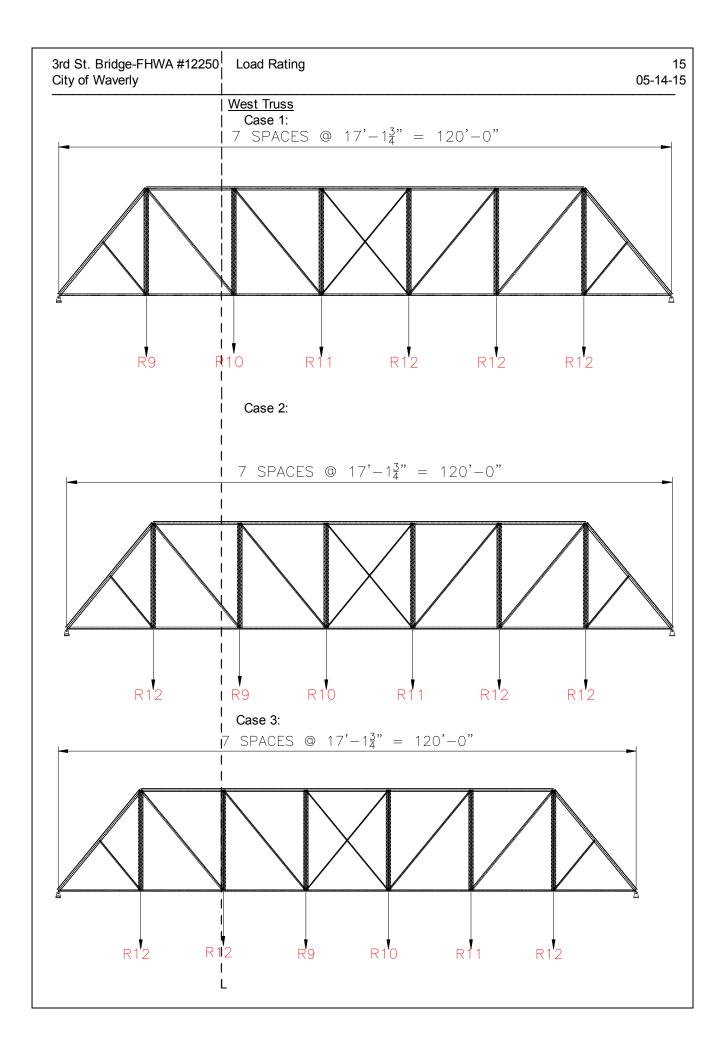

Distributed DL	Interior Stringers (at C.L. of west truss):
Distributed DL	
	$\mathbf{w}_{\mathbf{DL}_2_ext_strngr} \coloneqq \frac{\mathbf{w}_{\mathbf{DL}_2}}{\mathbf{W}_{\mathbf{deck}}} \cdot (2\mathbf{ft} + 5\mathbf{in}) = 177.02 \frac{\mathbf{lb}}{\mathbf{ft}}$
Distributed LL	$\mathbf{w}_{\mathbf{LL}_2_ext_strngr} := \mathbf{w}_{\mathbf{ped}_\mathbf{LL}} \cdot (2\mathbf{ft} + 5\mathbf{in}) = 217.5 \frac{\mathbf{lb}}{\mathbf{ft}}$
	Stringer forces analyzed in STAAD per AASHTO LRFR Pedestrian Strength I
	Mz(kip-in)
	$\begin{bmatrix} 300\\200 \end{bmatrix} = \begin{bmatrix} 300\\-200 \end{bmatrix}$
	100
1	
	200 - 300263 -200 -300
1	Stringers are C12x20
	$Z_{x_{C12x20}} := 25.6 in^{3}$
ا Nominal flexural resistance I ا	$\mathbf{\phi}\mathbf{M}_{n_ext_strngr_2} := \mathbf{F}_{\mathbf{y}} \cdot \mathbf{Z}_{\mathbf{x}_C12\mathbf{x}20} = 64 \cdot \mathbf{ft} \cdot \mathbf{k}$
	AASHTO LRFR Load Rating:
Stringer Capacity	$C_{ext_strngr_2} \coloneqq \phi_{c_ext_strngr_1} \cdot \phi_{s_ext_strngr_1} \cdot \phi M_{n_ext_strngr_2}$
Stringer DL moment	$\gamma DL_{ext_strngr_2} := 1.25 \cdot 6.28 ft \cdot k$
Stringer LL moment	$\gamma LL_{ext_strngr_2} := 1.75 \cdot 8.02 \mathbf{k} \cdot \mathbf{ft}$
Inventory Rating	$INV_{ext_strngr_2} := w_{ped_LL} \cdot \frac{C_{ext_strngr_2} - \gamma DL_{ext_strngr_2}}{\gamma LL_{ext_strngr_2}} = 298.5 \cdot psf$
Operating Rating	$OPR_{ext_strngr_2} := w_{ped_LL} \cdot \frac{C_{ext_strngr_2} - \gamma DL_{ext_strngr_2}}{\gamma LL_{ext_strngr_2} \cdot \left(\frac{1.35}{1.75}\right)} = 386.95 \cdot psf$
	$\gamma LL_{ext_strngr_2} \cdot \left(\frac{1}{1.75}\right)$ Sidewalk Bracket (tapered I beam):
	To account for the bracket that has significant web section loss and is
	disjointed from the bottom angles (bottom flange), the bottom 2" of the tapered I beam are excluded from the capacity calculation.
Section properties at truss	$\mathbf{A}_{sw_bracket} := 16in \cdot 0.25in + 2 \cdot 2.37in^2 = 8.74 \cdot in^2 \mathbf{a}_{sw_bracket} := \frac{10.7232}{2}in + 2.19in^2$
end I	$\mathbf{Z}_{sw_bracket} := \frac{\mathbf{A}_{sw_bracket}}{2} \cdot \mathbf{a}_{sw_bracket} = 33 \cdot \mathbf{in}^3$
Flexural resistance at truss	$\mathbf{\phi}\mathbf{M}_{\mathbf{sw_bracket}} \coloneqq \mathbf{F}_{\mathbf{y}} \cdot \mathbf{Z}_{\mathbf{sw_bracket}} = 82.5 \cdot \mathbf{ft} \cdot \mathbf{k}$
end l	AASHTO LRFR Load Rating:
Bracket Capacity	$\mathbf{C}_{\mathbf{sw_bracket}} \coloneqq 0.85 \cdot \boldsymbol{\phi} \mathbf{M}_{\mathbf{sw_bracket}} = 70.126 \cdot \mathbf{ft} \cdot \mathbf{k}$
	$\left(2.4\frac{\mathbf{k}}{\mathbf{k}}\right)$
DL moment at truss end	$\gamma \mathbf{DL}_{\mathbf{sw_bracket}} \coloneqq 1.25 \cdot \frac{\left(2.4 \frac{\mathbf{k}}{\mathbf{ft}}\right)}{2} \cdot (5\mathbf{ft})^2$

3rd St. Bridge-FHWA #12250 City of Waverly	Load Rating 05-14-15	6 5		
LL moment at truss end	$\gamma LL_{sw_bracket} := 1.75 \cdot \frac{\left(1.54 \frac{\mathbf{k}}{\mathbf{ft}}\right)}{2} \cdot \left(5 \mathbf{ft}\right)^2 \\ C_{sw_bracket} = \gamma DL_{sw_bracket}$			
Inventory Rating	$INV_{sw_bracket} := w_{ped_LL} \cdot \frac{C_{sw_bracket} - \gamma DL_{sw_bracket}}{\gamma LL_{sw_bracket}} = 87.16 \cdot psf$			
Operating Rating	$OPR_{sw_bracket} \coloneqq w_{ped_LL} \cdot \frac{C_{sw_bracket} - \gamma DL_{sw_bracket}}{\gamma LL_{sw_bracket} \cdot \left(\frac{1.35}{1.75}\right)} = 112.99 \cdot psf$ Floor Beams:			
DL from stringers	$\mathbf{P}_{\mathbf{DL_1_2_FB}} := 1.3\mathbf{k}$			
LL from stringers	$\mathbf{P}_{\mathbf{LL_1_2_FB}} := 3.74 \mathbf{k}$			
	Floor beam forces analyzed in STAAD per AASHTO Pedestrian LRFD Strength I (factored loads shown)			
	-6.545 kip	p		
	-1.625 kip	p		
	Floor beams are W18x55			
Nominal flexural resistance	$\mathbf{Z}_{\mathbf{x}_{\mathbf{W}\mathbf{18x55}}} \coloneqq 112\mathbf{in}^{3}$			
	$\phi \mathbf{M}_{n_FB_1} := \mathbf{F}_{\mathbf{y}} \cdot \mathbf{Z}_{\mathbf{x}_W18x55} = 280 \cdot \mathbf{ft} \cdot \mathbf{k}$ AASHTO LRFR Load Rating:			
System Factor	$\boldsymbol{\varphi}_{\mathbf{s}_{\mathbf{F}}\mathbf{B}_{1}1} \coloneqq 0.85$			
Floor Beam Capacity	$C_{FB_1} \coloneqq \phi_{s_FB_1} \cdot \phi M_{n_FB_1}$			
Floor Beam DL moment	$\gamma \mathbf{DL}_{\mathbf{FB}_1} \coloneqq 1.25 \cdot 27.9 \mathbf{ft} \cdot \mathbf{k}$			
Floor Beam LL moment	$\gamma LL_{FB_1} \coloneqq 1.75 \cdot 80.3 \mathbf{k} \cdot \mathbf{ft}$			
Inventory Rating	$\mathbf{INV}_{\mathbf{FB}_1} := \mathbf{w}_{\mathbf{ped}_LL} \cdot \frac{\mathbf{C}_{\mathbf{FB}_1} - \gamma \mathbf{DL}_{\mathbf{FB}_1}}{\gamma \mathbf{LL}_{\mathbf{FB}_1}} = 130.09 \cdot \mathbf{psf}$			
Operating Rating	$\mathbf{OPR}_{\mathbf{FB}_1} \coloneqq \mathbf{w}_{\mathbf{ped}_\mathbf{LL}} \cdot \frac{\mathbf{C}_{\mathbf{FB}_1} - \boldsymbol{\gamma} \mathbf{DL}_{\mathbf{FB}_1}}{\boldsymbol{\gamma} \mathbf{LL}_{\mathbf{FB}_1} \cdot \left(\frac{1.35}{1.75}\right)} = 168.64 \cdot \mathbf{psf}$			
	Truss Bearings:			
	The 4"φ pin at the SW bearing has 2.5" of remaining section.			
Pin & Bearing plates	$D_{SW} := 2.5 in$ $t_{SW} := 1.75 in$			
Nominal bearing resistance	$\mathbf{\Phi}\mathbf{P}_{\mathbf{n}_{\mathbf{S}\mathbf{W}}} \coloneqq \mathbf{F}_{\mathbf{y}} \cdot 2 \cdot \mathbf{D}_{\mathbf{S}\mathbf{W}} \cdot \mathbf{t}_{\mathbf{S}\mathbf{W}} = 262.5 \cdot \mathbf{k}$			
Strength I truss reactions (from STAAD analysis)	$\mathbf{V}_{\mathbf{u}_S\mathbf{W}} \coloneqq 189.3\mathbf{k}$			

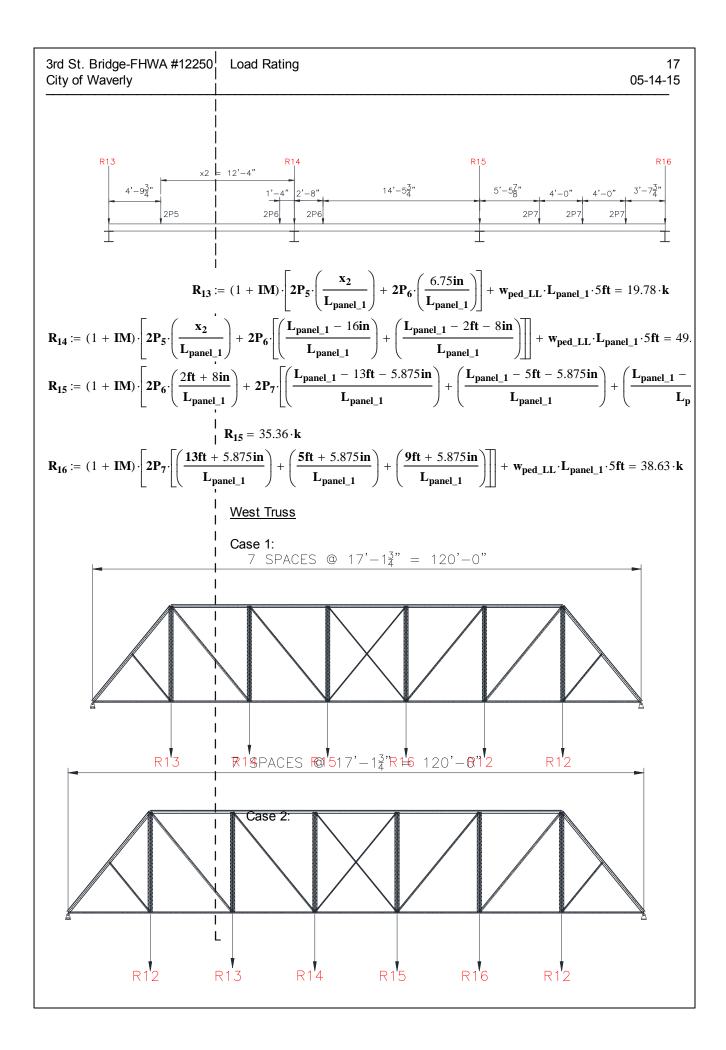


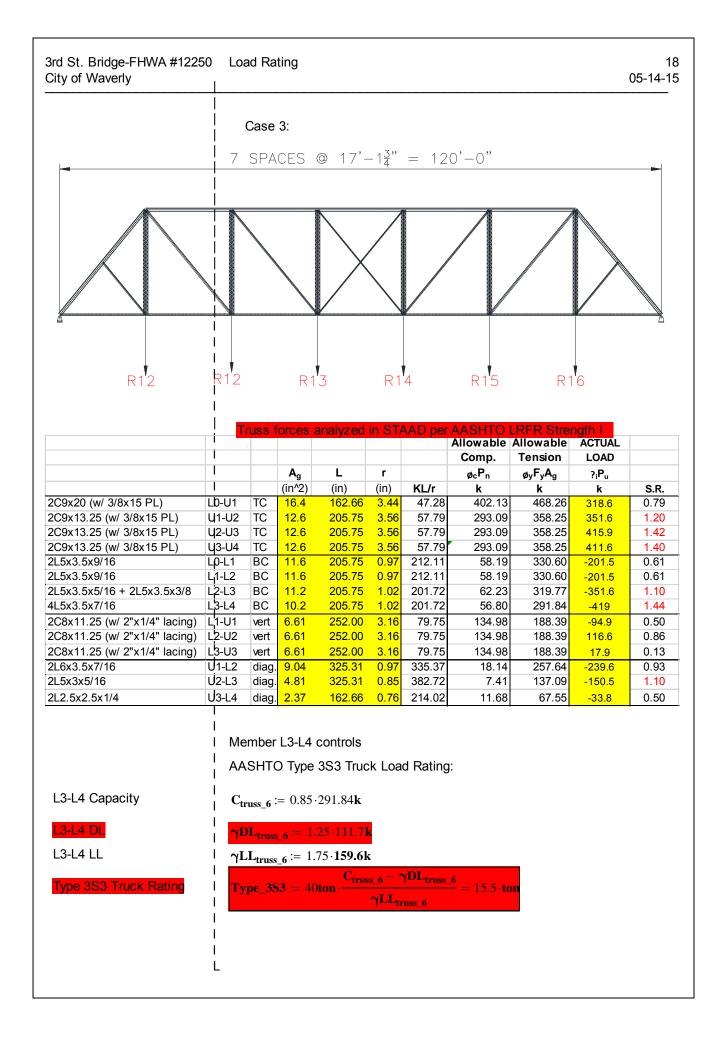


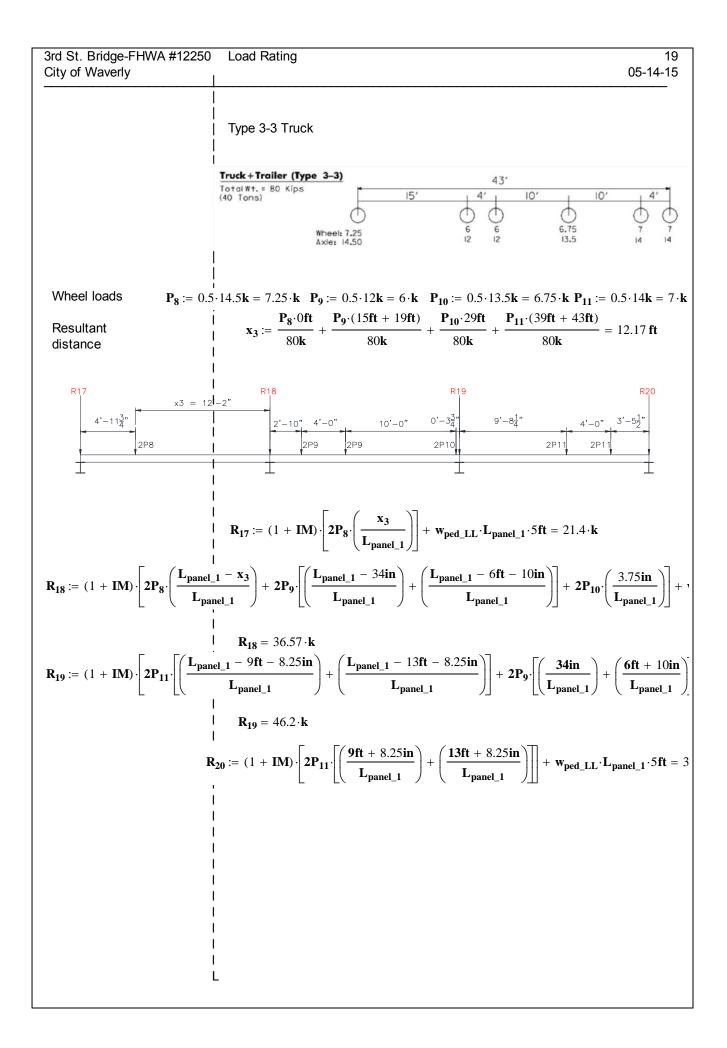


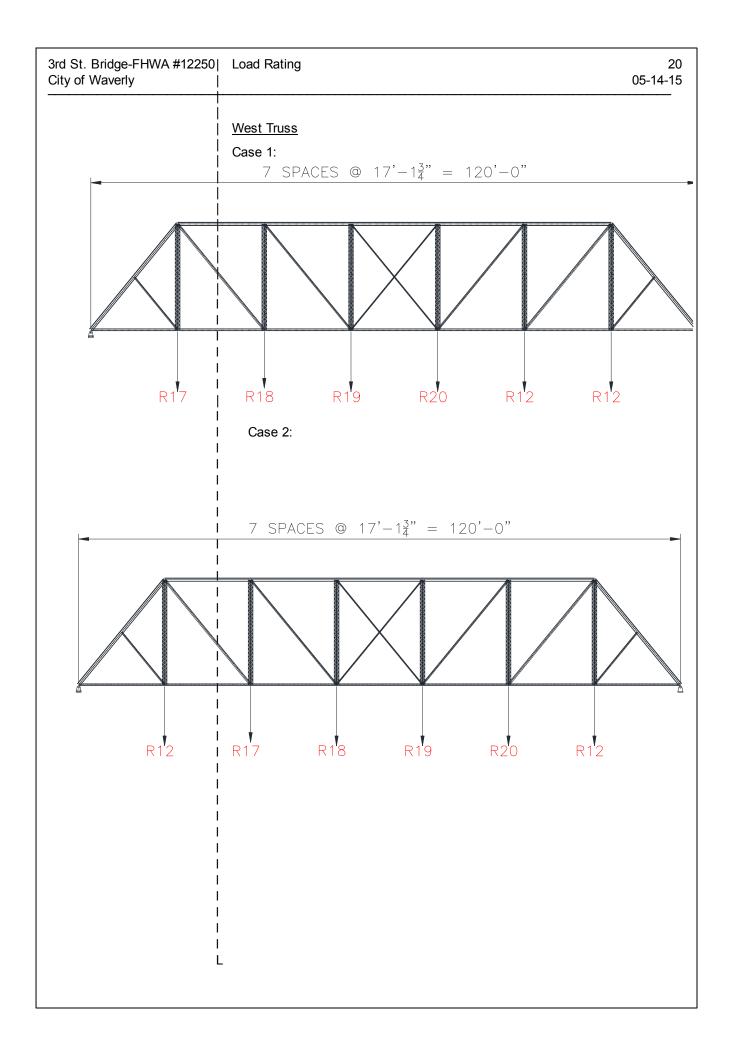


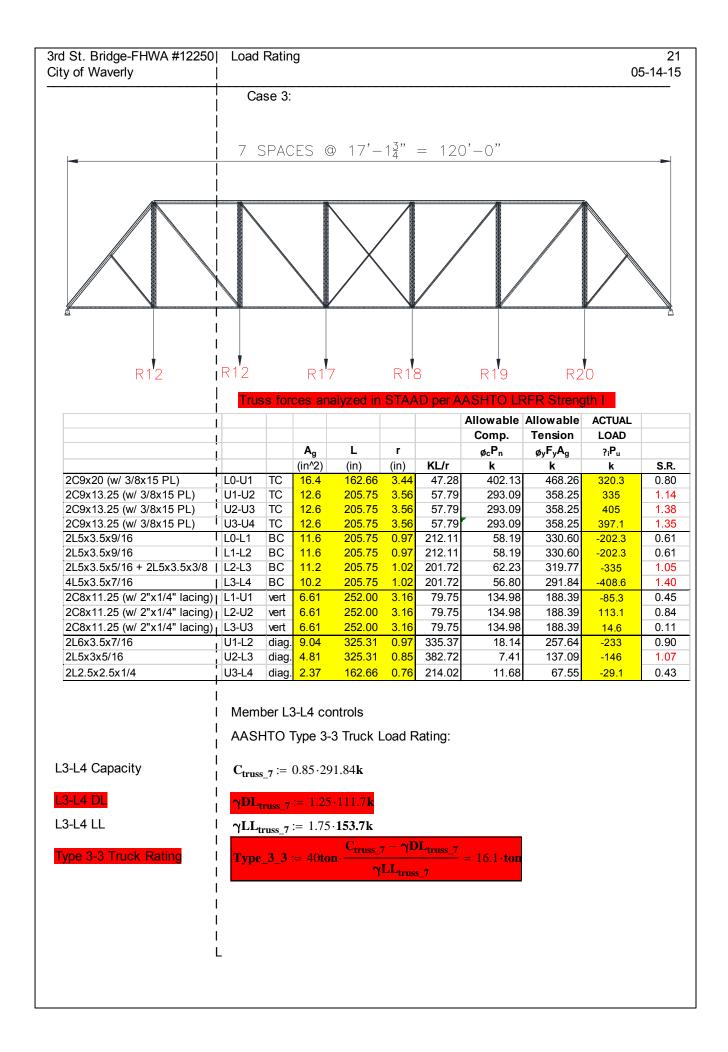
3rd St. Bridge-FHWA #12250 City of Waverly	Load Rating									11 05-14-15	
	Case 3:										
	7 SPACES @ $17' - 1\frac{3}{4}'' = 120' - 0''$										
-											
	$\frac{3'-1\frac{3}{4}"}{4} + \frac{14'-0"}{4} + \frac{3'-1\frac{3}{4}"}{4}$										
R4	R4		F	P1	F	▼ 2 ▼ 2 ₹2	P2 R3		R4		
	Truss forces analyzed in STAAD per AASHTO LRFR Strength I										
			_				Comp.	Tension	LOAD		
			A g (in^2)	(in)	r (in)	KL/r	ø _c P _n k	ø _y F _y A _g k	?₁Pu k	S.R.	
2C8x16.25 (w/ 5/16x14 PL)	L0-U1	TC	14	162.66	3.16	51.47	336.48	399.00	223.7	0.66	
	U1-U2	TC	11.1	205.75	3.16	65.11	249.24	316.92	254.2	1.02	
2C8x11.5 (w/ 5/16x14 PL) 2C8x11.5 (w/ 5/16x14 PL)	U2-U3 U3-U4	TC TC	11.1 11.1	205.75 205.75	3.16 3.16	65.11 65.11	249.24 249.24	316.92 316.92	304.3	1.22 1.18	
2L5x3.5x5/16	L0-L1	BC	5.12	205.75	1.02	201.72	249.24	145.92	294.5 -141.5	0.97	
2L5x3.5x5/16	L1-L2	BC	5.12	205.75	1.02	201.72	28.40	145.92	-141.5	0.97	
2L5x3.5x7/16	L2-L3	BC	8.01	205.75	1.00	205.75	42.70	228.29	-254.2	1.11	
2L5x3.5x1/2	L2-L3	BC	8.01	205.75	1.00	205.75	42.70	228.29	-299.8	1.31	
2C8x11.25 (w/ 2"x1/4" lacing)		vert	6.61	252.00	3.16	79.75	134.98	188.39	-35.3	0.19	
2C8x11.25 (w/ 2"x1/4" lacing)		vert	6.61	252.00		79.75	134.98	188.39	98.4	0.73	
2C8x11.25 (w/ 2"x1/4" lacing)	_	vert	6.61	252.00	3.16	79.75	134.98	188.39	24.4	0.18	
2L5x3x5/16	U1-L2	diag.	4.81	325.31	0.85	382.72	7.41	137.09	-183.8	1.34	
2L3.5x2.5x1/4 2L2.5x2.5x1/2	U2-L3	diag.		325.31	0.73	445.63	3.30	82.65	-127	1.54	
	U3-L4 diag. 4.5 325.31 0.74 439.61 5.26 128.25 -38.7 0.30 I I Member U2-L3 controls I AASHTO LRFR Load Rating:										
U2-L3 Capacity	$ C_{truss_3} := \min(0.85, \varphi_{c_truss_1} \cdot \varphi_{s_truss_1}) \cdot 82.65 k $ $ \gamma DL_{truss_3} := 1.25 \cdot 12.7 k $										
1											
U2-L3 LL				5.63.5 k C. ₂ =	νDI						
Inventory Rating Factor	$INV_{truss_3} := 1 \cdot \frac{C_{truss_3} - \gamma DL_{truss_3}}{\gamma LL_{truss_3}} = 0.43$										
Operating Rating Factor	ng Rating Factor $ \begin{array}{c} \mathbf{OPR}_{\mathbf{truss}_3} \coloneqq 1 \cdot \frac{\mathbf{C}_{\mathbf{truss}_3} - \gamma \mathbf{DL}_{\mathbf{truss}_3}}{\gamma \mathbf{LL}_{\mathbf{truss}_3} \cdot \left(\frac{1.35}{1.75}\right)} = 0.55 \end{array} $										
I	_	a05_4	-	γLL_{truss}	$3_{3} \cdot \left(\frac{1}{1}\right)$	$\left(\frac{.35}{.75}\right)$					










	 Tru	uss fo	rces ar	nalyz <u>ed</u> ir	ו STA	AD per A	ASHTO L	RFR Streng	gth I	
	_i						Allowable	Allowable	ACTUAL	
	1						Comp.	Tension	LOAD	
	1		Ag	L	r		ø _c P _n	ø _y F _y A _g	?₁ P u	
	1		(in^2)	(in)	(in)	KL/r	k	k	k	S.R.
C9x20 (w/ 3/8x15 PL)	Lþ-U1	TC	16.4	162.66	3.44	47.28	402.13	468.26	288.1	0.72
C9x13.25 (w/ 3/8x15 PL)	U 1-U2	TC	12.6	205.75	3.56	57.79	293.09		313.4	1.07
C9x13.25 (w/ 3/8x15 PL)	U 2-U3	TC	12.6	205.75	3.56	57.79	293.09		379.4	1.29
C9x13.25 (w/ 3/8x15 PL)	<u>U</u> 3-U4	TC	12.6	205.75	3.56	57.79	293.09		360.6	1.23
L5x3.5x9/16	Lp-L1	BC	11.6	205.75	0.97	212.11	58.19		-182.2	0.55
L5x3.5x9/16	L1-L2	BC	11.6	205.75	0.97	212.11	58.19		-182.2	0.55
L5x3.5x5/16 + 2L5x3.5x3/8	L2-L3	BC	11.2	205.75	1.02	201.72	62.23		-313.4	0.98
L5x3.5x7/16	L3-L4	BC	10.2	205.75	1.02	201.72	56.80		-367.1	1.26
C8x11.25 (w/ 2"x1/4" lacing)	L1-U1	vert	6.61	252.00	3.16	79.75	134.98		-62.5	0.33
C8x11.25 (w/ 2"x1/4" lacing)	L2-U2	vert	6.61	252.00	3.16	79.75	134.98		100.5	0.74
C8x11.25 (w/ 2"x1/4" lacing)	L3-U3	vert	6.61	252.00	3.16	79.75	134.98		16.2	0.12
L6x3.5x7/16	U1-L2	diag.	9.04	325.31	0.97	335.37	18.14		-208.9	0.81
L5x3x5/16	U2-L3	diag.		325.31	0.85	382.72	7.41		-129.7	0.95
L2.5x2.5x1/4	U3-L4	diag.	2.37	162.66	0.76	214.02	11.68	67.55	-29.7	0.44
	ΙγΙ	L _{truss}	_ 5 := 1.	25 · 110.71 75 · 137.71 5 ton · C _{tru}	κ.	γDL _{truss}	$\frac{5}{2} = 12.5 \cdot t$	on		
	7I Ty Ty 	L _{truss}	_ 5 := 1.	75·137.7 1	κ.	γDL _{truss}	<u>-</u> 5 = 12.5 ⋅ t	on		
	γΙ Τγ Τγ Ι Ι Τγρε	L _{truss} pe_4 : e 3S3 ck+5e	_5 := 1. := 27.2: Truck	75·137.7 1	ς _{ss_5} – γLL _t 3A)	γDL _{truss} russ_5	$\frac{5}{2} = 12.5 \cdot t$ $43'$	_	4"	4'
	γΙ Τγ Τγ Ι Ι Τγρε	L _{truss} pe_4 : e 3S3 ck+Sec	_5 := 1. := 27.2: Truck mi-traile	75 • 137 .71	ς _{ss_5} – γLL _t 3A)		43' 6.5	_		
Type 4 Truck Rating	γΙ Τγ Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι	$\frac{\mathbf{L}_{\text{truss}}}{\mathbf{pe}_{4}} = 3S3$ $\frac{\mathbf{ck} + \mathbf{Se}_{5}}{\text{Tons}}$	_5 := 1. := 27.2: Truck mi-traile 80 Kips	75.137.71 5ton. r (Type 35 wheels 6 Axle: 12 = 6.k	$\frac{3A}{P_6} := ($	′ 6.5 13.0	43' 6.5 13.0 = 6.5 · k	20′ ₽ ₇ := 0.5·		
Type 4 Truck Rating Vheel loads	γΙ Τγ Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι	$\frac{\mathbf{L}_{\text{truss}}}{\mathbf{pe}_{4}} = 3S3$ $\frac{\mathbf{ck} + \mathbf{Se}_{5}}{\text{Tons}}$	_5 := 1. := 27.2: Truck mi-traile 80 Kips	$r (Type 35)$ $wheel: 6$ $Axle: 12$ $= 6 \cdot k$ $P_{6} \cdot 11ft$	$\frac{3A}{P_6} := (0 + \frac{P_6}{P_6})$	$\frac{1}{6.5}$ $6.5 \cdot 13 \mathbf{k} = -15 \mathbf{ft} + -15 \mathbf{ft} +$	$43'$ 6.5 13.0 $6.5 \cdot \mathbf{k}$ $\mathbf{P_7} \cdot (35\mathbf{ft} + 3)$	$P_7 := 0.5 \cdot 39ft + 43ft$		
Type 4 Truck Rating /heel loads	γΙ Τγ Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι	$\frac{\mathbf{L}_{\text{truss}}}{\mathbf{pe}_{4}} = 3S3$ $\frac{\mathbf{ck} + \mathbf{Se}_{5}}{\text{Tons}}$	_5 := 1. := 27.2: Truck mi-traile 80 Kips	75.137.71 5ton. r (Type 35 wheels 6 Axle: 12 = 6.k	$\frac{3A}{P_6} := (0 + \frac{P_6}{P_6})$	′ 6.5 13.0	43' 6.5 13.0 = 6.5 · k	$P_7 := 0.5 \cdot 39ft + 43ft$		
U2-U3 LL Type 4 Truck Rating Vheel loads Resultant istance	γΙ Τγ Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι	$\frac{\mathbf{L}_{\text{truss}}}{\mathbf{pe}_{4}} = 3S3$ $\frac{\mathbf{ck} + \mathbf{Se}_{5}}{\text{Tons}}$	_5 := 1. := 27.2: Truck mi-traile 80 Kips	$r (Type 35)$ $wheel: 6$ $Axle: 12$ $= 6 \cdot k$ $P_{6} \cdot 11ft$	$\frac{3A}{P_6} := (0 + \frac{P_6}{P_6})$	$\frac{1}{6.5}$ $6.5 \cdot 13 \mathbf{k} = -15 \mathbf{ft} + -15 \mathbf{ft} +$	$43'$ 6.5 13.0 $6.5 \cdot \mathbf{k}$ $\mathbf{P_7} \cdot (35\mathbf{ft} + 3)$	$P_7 := 0.5 \cdot 39ft + 43ft$		
Type 4 Truck Rating Vheel loads	γΙ Τγ Ι Ι Ι Ι Ι Ι Ι Ι Ι Ι	$\frac{\mathbf{L}_{\text{truss}}}{\mathbf{pe}_{4}} = 3S3$ $\frac{\mathbf{ck} + \mathbf{Se}_{5}}{\text{Tons}}$	_5 := 1. := 27.2: Truck mi-traile 80 Kips	$r (Type 35)$ $wheel: 6$ $Axle: 12$ $= 6 \cdot k$ $P_{6} \cdot 11ft$	$\frac{3A}{P_6} := (0 + \frac{P_6}{P_6})$	$\frac{1}{6.5}$ $6.5 \cdot 13 \mathbf{k} = -15 \mathbf{ft} + -15 \mathbf{ft} +$	$43'$ 6.5 13.0 $6.5 \cdot \mathbf{k}$ $\mathbf{P_7} \cdot (35\mathbf{ft} + 3)$	$P_7 := 0.5 \cdot 39ft + 43ft$		

3rd St. Bridge-FHWA #12250 City of Waverly	Load Rating	22 05-14-15
	Legal Load Rating Summary Type_4 = 13·ton	
	Type_3S3 = 16·ton Type_3_3 = 16·ton	
	WEIGHT LIMIT 13 16	
	_	

3rd St. Bridge-FHWA #12250 City of Waverly	Load	Rati	ng						0	23 5-14-15	
SIDEWALK ONLY Pedestrian Live Load											
$ \begin{array}{ c c c c c c } LL \mbox{ Panel Point Load (west)} & LL_{ped_3} \coloneqq 5ft \cdot L_{panel_1} \cdot w_{ped_LL} = 7.72 \cdot k \\ & \underline{West \mbox{ Truss}} \\ & Truss \mbox{ forces analyzed in STAAD per AASHTO LRFD Strength I} \\ & (factored loads shown) \end{array} $											
ZK 375 kip ZK 375 kip <thz 375="" kip<="" th=""> ZK 375 kip ZK 375 ki</thz>											
							Allowable	Allowable	ACTUAL		
							Comp.	Tension	LOAD		
	i		Ag	L	r		ø _c P _n	$\phi_{y}F_{y}A_{g}$?i₽u		
	1		(in^2)	(in)	(in)	KL/r	k	k	k	S.R.	
2C9x20 (w/ 3/8x15 PL)	L0-U1	TC	16.4	162.66	<mark>3.44</mark>	47.28	402.13		161.8	0.40	
2C9x13.25 (w/ 3/8x15 PL)	U1-U2	TC	12.6	205.75	<mark>3.56</mark>	57.79	293.09	358.25	170.5	0.58	
2C9x13.25 (w/ 3/8x15 PL)	U2-U3	TC	12.6	205.75	<mark>3.56</mark>	57.79	293.09	358.25	204.6	0.70	
2C9x13.25 (w/ 3/8x15 PL)	U3-U4	TC	12.6	205.75	3.56	57.79	293.09	358.25	202.8	0.69	
2L5x3.5x9/16	LO-L1	BC	11.6	205.75	0.97	212.11	58.19	330.60	-102.3	0.31	
2L5x3.5x9/16	L1-L2	BC	11.6	205.75	0.97	212.11	58.19	330.60	-102.3	0.31	
	L2-L3	BC	11.2	205.75	1.02	201.72	62.23	319.77	-170.5	0.53	
	L3-L4	BC	10.2	205.75	1.02	201.72	56.80	291.84	-206.4	0.71	
2C8x11.25 (w/ 2"x1/4" lacing)		vert	6.61	252.00		79.75	134.98	188.39	-40.9	0.22	
2C8x11.25 (w/ 2"x1/4" lacing)		vert	6.61	252.00	3.16	79.75	134.98	188.39	40.9	0.30	
,	L3-U3	vert	6.61	252.00	3.16	79.75	134.98	188.39	2.2	0.02	
2L6x3.5x7/16 2L5x3x5/16	U1-L2 U2-L3	-	9.04 4.81	325.31 325.31	0.97 0.85	335.37 382.72	18.14 7.41	257.64 137.09	-105.6 -52.8	0.41 0.39	
2L2.5x2.5x1/4	U3-L4	-	2.37	162.66	0.00	214.02	11.68		-2.8	0.03	
$L3-L4 \text{ Capacity}$ $L3-L4 \text{ Capacity}$ $L3-L4 \text{ Capacity}$ $L3-L4 \text{ Capacity}$ $L3-L4 \text{ DL}$ $L3-L4 \text{ DL}$ $L3-L4 \text{ DL}$ $L3-L4 \text{ LL}$ $\gamma \text{DL}_{\text{truss}_8} \coloneqq \text{min} (0.85, \varphi_{e_\text{truss}_1} \cdot \varphi_{s_\text{truss}_1}) \cdot 291.8 \text{ k}$ $\Gamma \text{VL}_{\text{truss}_8} \coloneqq 1.25 \cdot 111.7 \text{ k}$ $\Gamma \text{VL}_{\text{truss}_8} \coloneqq 1.75 \cdot 38.1 \text{ k}$ $I \text{ NV}_{\text{truss}_8} \coloneqq w_{\text{ped_LL}} \cdot \frac{C_{\text{truss}_8} - \gamma \text{DL}_{\text{truss}_8}}{\gamma \text{LL}_{\text{truss}_8}} = 112.85 \cdot \text{psf}$ $Operating \text{ Rating}$ $Operating \text{ Rating}$ $Operating Comparison of the second seco$											